nn.Embedding

在这个代码片段中,TokenEmbedding 类继承了 torch.nn.Embedding 类,并在 __init__ 方法中通过调用 super(TokenEmbedding, self).__init__(vocab_size, d_model, padding_idx=1) 来初始化父类 nn.Embedding。由于 TokenEmbedding 没有定义新的方法,默认情况下它会使用 nn.Embedding 的行为来提供返回值。

nn.Embedding 的行为

nn.Embedding 是一个嵌入层,用于将词汇表中的单词映射为稠密的向量表示。它的作用是查找输入索引对应的嵌入向量,具体步骤如下:

  1. 当你传入词汇的索引(整数)时,它会从权重矩阵中查找对应的嵌入向量。
  2. 它不需要定义一个显式的 forward 方法,因为调用 nn.Embedding 实例时,自动会执行这个查找操作。

使用方式

  1. 实例化 TokenEmbedding :实例化时会初始化一个嵌入矩阵,矩阵的维度是 vocab_size x d_model,其中 vocab_size 是词汇表的大小,d_model 是每个单词的向量维度。

  2. 调用实例:传入单词索引(整数序列),实例会返回对应的嵌入向量。

示例:

python 复制代码
import torch
import torch.nn as nn

class TokenEmbedding(nn.Embedding):
    def __init__(self, vocab_size, d_model):
        super(TokenEmbedding, self).__init__(vocab_size, d_model, padding_idx=1)

# 假设词汇表大小为 100,嵌入维度为 64
vocab_size = 100
d_model = 64

# 实例化 TokenEmbedding
embedding_layer = TokenEmbedding(vocab_size, d_model)

# 创建输入张量,表示单词的索引
input_indices = torch.LongTensor([2, 5, 10])

# 调用实例,将词汇索引转换为嵌入向量
output = embedding_layer(input_indices)
print(output.shape)  # 输出形状为 (3, 64),因为输入中有 3 个单词,每个单词的嵌入向量是 64 维

解释:

  • vocab_size: 词汇表的大小,即可以表示多少个不同的单词。
  • d_model: 每个单词的嵌入向量的维度。
  • padding_idx=1: 用于指定填充标记的索引,通常是为了忽略填充标记在训练中的影响。

在这个类中,TokenEmbedding 类实际上没有显式返回值的方法,但是通过调用 __call__ 方法(继承自 nn.Embedding),它会查找并返回对应的嵌入向量。

相关推荐
Coding茶水间4 分钟前
基于深度学习的遥感地面物体检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
金融小师妹32 分钟前
基于NLP政策文本分析与多智能体博弈模拟的FOMC决策推演:“美联储传声筒”下的利率路径分歧
大数据·人工智能·深度学习·1024程序员节
互亿无线明明41 分钟前
国际短信通知服务:如何为全球业务构建稳定的跨国消息触达体系?
java·c语言·python·php·objective-c·ruby·composer
TracyCoder1231 小时前
机器学习与深度学习基础(三):感知机、神经网络、前向传播、反向传播
深度学习·神经网络·机器学习
相思半1 小时前
数据偏见去偏方法系统方法论学习(基础知识+实践运用)-新手友好版
大数据·人工智能·python·深度学习·机器学习·数据分析
哥布林学者1 小时前
吴恩达深度学习课程四:计算机视觉 第一周:卷积基础知识(四)池化操作与卷积中的反向传播
深度学习·ai
黑客思维者1 小时前
Python自动化测试Pytest/Unittest深度解析与接口测试落地实践
开发语言·python·pytest·unittest
鲁邦通物联网1 小时前
工业边缘网关+Python:实现PLC数据采集的微服务化
python·数据采集·工业数据采集·边缘网关·边缘计算网关·5g数采
中等生1 小时前
深入理解 Gunicorn
python·uwsgi
IT运维爱好者1 小时前
【Linux】Python3 环境的下载与安装
linux·python·centos7