nn.Embedding

在这个代码片段中,TokenEmbedding 类继承了 torch.nn.Embedding 类,并在 __init__ 方法中通过调用 super(TokenEmbedding, self).__init__(vocab_size, d_model, padding_idx=1) 来初始化父类 nn.Embedding。由于 TokenEmbedding 没有定义新的方法,默认情况下它会使用 nn.Embedding 的行为来提供返回值。

nn.Embedding 的行为

nn.Embedding 是一个嵌入层,用于将词汇表中的单词映射为稠密的向量表示。它的作用是查找输入索引对应的嵌入向量,具体步骤如下:

  1. 当你传入词汇的索引(整数)时,它会从权重矩阵中查找对应的嵌入向量。
  2. 它不需要定义一个显式的 forward 方法,因为调用 nn.Embedding 实例时,自动会执行这个查找操作。

使用方式

  1. 实例化 TokenEmbedding :实例化时会初始化一个嵌入矩阵,矩阵的维度是 vocab_size x d_model,其中 vocab_size 是词汇表的大小,d_model 是每个单词的向量维度。

  2. 调用实例:传入单词索引(整数序列),实例会返回对应的嵌入向量。

示例:

python 复制代码
import torch
import torch.nn as nn

class TokenEmbedding(nn.Embedding):
    def __init__(self, vocab_size, d_model):
        super(TokenEmbedding, self).__init__(vocab_size, d_model, padding_idx=1)

# 假设词汇表大小为 100,嵌入维度为 64
vocab_size = 100
d_model = 64

# 实例化 TokenEmbedding
embedding_layer = TokenEmbedding(vocab_size, d_model)

# 创建输入张量,表示单词的索引
input_indices = torch.LongTensor([2, 5, 10])

# 调用实例,将词汇索引转换为嵌入向量
output = embedding_layer(input_indices)
print(output.shape)  # 输出形状为 (3, 64),因为输入中有 3 个单词,每个单词的嵌入向量是 64 维

解释:

  • vocab_size: 词汇表的大小,即可以表示多少个不同的单词。
  • d_model: 每个单词的嵌入向量的维度。
  • padding_idx=1: 用于指定填充标记的索引,通常是为了忽略填充标记在训练中的影响。

在这个类中,TokenEmbedding 类实际上没有显式返回值的方法,但是通过调用 __call__ 方法(继承自 nn.Embedding),它会查找并返回对应的嵌入向量。

相关推荐
CeshirenTester3 小时前
9B 上端侧:多模态实时对话,难点其实在“流”
开发语言·人工智能·python·prompt·测试用例
Starry_hello world3 小时前
Python (2)
python
ID_180079054733 小时前
Python爬取京东商品库存数据与价格监控
jvm·python·oracle
冰西瓜6004 小时前
深度学习的数学原理(七)—— 优化器:从SGD到Adam
人工智能·深度学习
-To be number.wan4 小时前
Python数据分析:时间序列数据分析
开发语言·python·数据分析
Faker66363aaa5 小时前
YOLO13-C3K2-AdditiveBlock:水果质量智能检测系统_3
python
过期的秋刀鱼!5 小时前
神经网络-代码中的推理
人工智能·深度学习·神经网络
2401_828890645 小时前
实现扩散模型 Stable Diffusion - MNIST 数据集
人工智能·python·深度学习·stable diffusion
jz_ddk6 小时前
[指南] Python循环语句完全指南
开发语言·python·continue·循环·for·while·break
Evand J6 小时前
【Python代码例程】长短期记忆网络(LSTM)和无迹卡尔曼滤波(UKF)的结合,处理复杂非线性系统和时间序列数据
python·lstm·滤波