回归模型拟合效果的统计指标: 决定系数 R2 r2 r2_score

决定系数 (Coefficient of Determination),通常用 R 2 R^2 R2 表示,是一种衡量回归模型拟合效果的统计量。它表示模型解释自变量和因变量之间变异程度的比例。决定系数的值在 [ 0 , 1 ] [0, 1] [0,1] 之间,值越接近 1,模型的拟合效果越好。

决定系数的计算公式:

R 2 = 1 − SSR SST R^2 = 1 - \frac{\text{SSR}}{\text{SST}} R2=1−SSTSSR

其中:

  • SSR(残差平方和) :模型的预测值与真实值之间误差的平方和,即:
    SSR = ∑ i = 1 n ( y i − y ^ i ) 2 \text{SSR} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 SSR=i=1∑n(yi−y^i)2

    其中, y i y_i yi 是实际值, y ^ i \hat{y}_i y^i 是预测值。

  • SST(总平方和) :实际值与其平均值之间的差异的平方和,即:
    SST = ∑ i = 1 n ( y i − y ˉ ) 2 \text{SST} = \sum_{i=1}^{n} (y_i - \bar{y})^2 SST=i=1∑n(yi−yˉ)2

    其中, y ˉ \bar{y} yˉ 是实际值的平均值。

决定系数的解释:

  1. R² = 1:表示模型完美拟合数据,即所有实际值都被模型准确预测。
  2. R² = 0:表示模型的预测效果与简单的平均值预测效果相同。即,模型没有解释因变量的变异。
  3. R² < 0 :当模型的预测值比平均值预测得更差时, R 2 R^2 R2 可以为负数,这表示模型没有任何解释能力。

决定系数的意义:

  • 决定系数可以用来衡量模型对数据的解释力。较高的 R 2 R^2 R2 表明模型较好地解释了数据中的变异,但它不能直接说明模型是否是最优模型,或是否适合所有情况。
  • R 2 R^2 R2 仅衡量线性关系的好坏,对于非线性回归模型,可能需要使用其他性能度量指标(如调整后的 R 2 R^2 R2、AIC、BIC 等)。

示例:如何解释 R 2 R^2 R2

假设在一个简单的线性回归中, R 2 = 0.85 R^2 = 0.85 R2=0.85,这意味着模型可以解释 85% 的数据变异,而剩余的 15% 可能是由于其他未被模型捕捉的因素导致的误差。

总结来说,决定系数 R 2 R^2 R2 是用于评估回归模型性能的重要指标,特别是衡量模型对数据中变异的解释能力。

相关推荐
g***B7381 小时前
Java 工程复杂性的真正来源:从语言设计到现代架构的全链路解析
java·人工智能·架构
Shawn_Shawn4 小时前
大模型的奥秘:Token与Transformer简单理解
人工智能·llm
weixin_377634845 小时前
【K-S 检验】Kolmogorov–Smirnov计算过程与示例
人工智能·深度学习·机器学习
菜鸟起航ing6 小时前
Spring AI 全方位指南:从基础入门到高级实战
java·人工智能·spring
Guheyunyi6 小时前
智慧消防管理系统如何重塑安全未来
大数据·运维·服务器·人工智能·安全
ZZY_dl6 小时前
训练数据集(三):真实场景下采集的课堂行为目标检测数据集,可直接用于YOLO各版本训练
人工智能·yolo·目标检测
yiersansiwu123d7 小时前
AI伦理治理:在创新与规范之间寻找动态平衡
人工智能
华清远见成都中心7 小时前
成都理工大学&华清远见成都中心实训,助力电商人才培养
大数据·人工智能·嵌入式
鲨莎分不晴7 小时前
强化学习第五课 —— A2C & A3C:并行化是如何杀死经验回放
网络·算法·机器学习
爱好读书7 小时前
AI生成er图/SQL生成er图在线工具
人工智能