深度学习(6):Dataset 和 DataLoader

文章目录

  • [Dataset 类](#Dataset 类)
  • [DataLoader 类](#DataLoader 类)

Dataset 类

概念:

  • Dataset 是一个抽象类,用于表示数据集。它定义了如何获取数据集中的单个样本和标签。

作用:

  • 为数据集提供统一的接口,便于数据的读取、预处理和管理。

关键方法:

  • __len__(self): 返回数据集的大小(样本数量)。
  • __getitem__(self, index): 根据索引 index 返回对应的样本和标签。

自定义 Dataset:

需要继承 torch.utils.data.Dataset并实现上述两个方法。

示例(PyTorch):

python 复制代码
import torch
from torch.utils.data import Dataset

class Dataset(Dataset):
    def __init__(self, datas, labels):
        self.datas = datas # 数据文件路径列表
        self.labels = labels # 标签列表

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        # 加载数据,例如读取图像文件
        data = self.data[idx]
        label = self.labels[idx]
		# 一系列的处理
        return data, label

DataLoader 类

概念:

  • DataLoader 是一个数据迭代器,用于包装 Dataset,以便于批量(batch)加载数据。

作用:

  • 提供批量数据、数据打乱(shuffle)、并行加载(多线程/多进程)等功能,提高数据加载的效率。

关键参数:

  • dataset: 要加载的数据集(Dataset 实例)。
  • batch_size: 每个批次的样本数量。
  • shuffle: 是否在每个 epoch 开始时打乱数据。
  • num_workers: 使用多少子进程来加载数据(0 表示不使用多进程)。
  • collate_fn: 指定如何将一批样本组合成一个批次。

工作流程:

  • Dataset 中按索引取出样本。
  • 使用 collate_fn 将多个样本组合成一个批次。
  • 迭代返回批量数据供模型训练或评估。

示例(PyTorch):

python 复制代码
from torch.utils.data import DataLoader

# 创建 Dataset 实例
dataset = MyDataset(datas, labels)

# 创建 DataLoader 实例
dataloader = DataLoader(dataset, batch_size=32, shuffle=True, num_workers=4)

相关推荐
Luis Li 的猫猫1 小时前
深度学习中的知识蒸馏
人工智能·经验分享·深度学习·学习·算法
木觞清3 小时前
PyTorch与TensorFlow的对比:哪个框架更适合你的项目?
人工智能·pytorch·tensorflow
wyg_0311137 小时前
用deepseek学大模型04-模型可视化与数据可视化
人工智能·机器学习·信息可视化
陈敬雷-充电了么-CEO兼CTO8 小时前
DeepSeek核心算法解析:如何打造比肩ChatGPT的国产大模型
人工智能·神经网络·自然语言处理·chatgpt·大模型·aigc·deepseek
盼小辉丶8 小时前
TensorFlow深度学习实战(8)——卷积神经网络
深度学习·cnn·tensorflow
南风过闲庭8 小时前
人工智能泡沫效应
大数据·人工智能·科技·搜索引擎·百度·ai
我是一个对称矩阵9 小时前
YOLOv5-Seg 深度解析:与 YOLOv5 检测模型的区别
人工智能·yolo·目标跟踪
AomanHao9 小时前
图像质量评价指标-UCIQE-UIQM
图像处理·人工智能·计算机视觉·评价指标
MYT_flyflyfly9 小时前
计算机视觉-尺度不变区域
人工智能·计算机视觉
何小Ai同学9 小时前
Deepseek赚钱密码:小场景闭环如何让你快速盈利?
人工智能·架构·deepseek