深度学习(6):Dataset 和 DataLoader

文章目录

  • [Dataset 类](#Dataset 类)
  • [DataLoader 类](#DataLoader 类)

Dataset 类

概念:

  • Dataset 是一个抽象类,用于表示数据集。它定义了如何获取数据集中的单个样本和标签。

作用:

  • 为数据集提供统一的接口,便于数据的读取、预处理和管理。

关键方法:

  • __len__(self): 返回数据集的大小(样本数量)。
  • __getitem__(self, index): 根据索引 index 返回对应的样本和标签。

自定义 Dataset:

需要继承 torch.utils.data.Dataset并实现上述两个方法。

示例(PyTorch):

python 复制代码
import torch
from torch.utils.data import Dataset

class Dataset(Dataset):
    def __init__(self, datas, labels):
        self.datas = datas # 数据文件路径列表
        self.labels = labels # 标签列表

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        # 加载数据,例如读取图像文件
        data = self.data[idx]
        label = self.labels[idx]
		# 一系列的处理
        return data, label

DataLoader 类

概念:

  • DataLoader 是一个数据迭代器,用于包装 Dataset,以便于批量(batch)加载数据。

作用:

  • 提供批量数据、数据打乱(shuffle)、并行加载(多线程/多进程)等功能,提高数据加载的效率。

关键参数:

  • dataset: 要加载的数据集(Dataset 实例)。
  • batch_size: 每个批次的样本数量。
  • shuffle: 是否在每个 epoch 开始时打乱数据。
  • num_workers: 使用多少子进程来加载数据(0 表示不使用多进程)。
  • collate_fn: 指定如何将一批样本组合成一个批次。

工作流程:

  • Dataset 中按索引取出样本。
  • 使用 collate_fn 将多个样本组合成一个批次。
  • 迭代返回批量数据供模型训练或评估。

示例(PyTorch):

python 复制代码
from torch.utils.data import DataLoader

# 创建 Dataset 实例
dataset = MyDataset(datas, labels)

# 创建 DataLoader 实例
dataloader = DataLoader(dataset, batch_size=32, shuffle=True, num_workers=4)

相关推荐
Jackilina_Stone2 小时前
transformers:打造的先进的自然语言处理
人工智能·自然语言处理·transformers
2401_897930062 小时前
BERT 模型是什么
人工智能·深度学习·bert
风筝超冷3 小时前
GPT - 多头注意力机制(Multi-Head Attention)模块
gpt·深度学习·attention
最新快讯4 小时前
科技快讯 | 阿里云百炼MCP服务上线;英伟达官宣:CUDA 工具链将全面原生支持 Python
人工智能
__Benco5 小时前
OpenHarmony子系统开发 - 热管理(一)
人工智能·harmonyos
吴法刚6 小时前
14-Hugging Face 模型微调训练(基于 BERT 的中文评价情感分析(二分类))
人工智能·深度学习·自然语言处理·分类·langchain·bert·langgraph
碳基学AI7 小时前
北京大学DeepSeek内部研讨系列:AI在新媒体运营中的应用与挑战|122页PPT下载方法
大数据·人工智能·python·算法·ai·新媒体运营·产品运营
是店小二呀7 小时前
Llama 4革命性发布与绿色AI前沿研究
人工智能·llama
2301_799755347 小时前
文件内容课堂总结
人工智能
杰克逊的日记7 小时前
AI集群设计
人工智能·ai·gpu·ai集群·pytorach