深度学习(6):Dataset 和 DataLoader

文章目录

  • [Dataset 类](#Dataset 类)
  • [DataLoader 类](#DataLoader 类)

Dataset 类

概念:

  • Dataset 是一个抽象类,用于表示数据集。它定义了如何获取数据集中的单个样本和标签。

作用:

  • 为数据集提供统一的接口,便于数据的读取、预处理和管理。

关键方法:

  • __len__(self): 返回数据集的大小(样本数量)。
  • __getitem__(self, index): 根据索引 index 返回对应的样本和标签。

自定义 Dataset:

需要继承 torch.utils.data.Dataset并实现上述两个方法。

示例(PyTorch):

python 复制代码
import torch
from torch.utils.data import Dataset

class Dataset(Dataset):
    def __init__(self, datas, labels):
        self.datas = datas # 数据文件路径列表
        self.labels = labels # 标签列表

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        # 加载数据,例如读取图像文件
        data = self.data[idx]
        label = self.labels[idx]
		# 一系列的处理
        return data, label

DataLoader 类

概念:

  • DataLoader 是一个数据迭代器,用于包装 Dataset,以便于批量(batch)加载数据。

作用:

  • 提供批量数据、数据打乱(shuffle)、并行加载(多线程/多进程)等功能,提高数据加载的效率。

关键参数:

  • dataset: 要加载的数据集(Dataset 实例)。
  • batch_size: 每个批次的样本数量。
  • shuffle: 是否在每个 epoch 开始时打乱数据。
  • num_workers: 使用多少子进程来加载数据(0 表示不使用多进程)。
  • collate_fn: 指定如何将一批样本组合成一个批次。

工作流程:

  • Dataset 中按索引取出样本。
  • 使用 collate_fn 将多个样本组合成一个批次。
  • 迭代返回批量数据供模型训练或评估。

示例(PyTorch):

python 复制代码
from torch.utils.data import DataLoader

# 创建 Dataset 实例
dataset = MyDataset(datas, labels)

# 创建 DataLoader 实例
dataloader = DataLoader(dataset, batch_size=32, shuffle=True, num_workers=4)

相关推荐
davysiao9 分钟前
AG-UI 协议:重构多模态交互,开启智能应用新纪元
人工智能
沃洛德.辛肯11 分钟前
PyTorch 的 F.scaled_dot_product_attention 返回Nan
人工智能·pytorch·python
charles_vaez29 分钟前
开源模型应用落地-模型上下文协议(MCP)-Resources-资源的使用逻辑
深度学习·语言模型·自然语言处理·开源
sy_cora37 分钟前
IEEE 列表会议第五届机器人、自动化与智能控制国际会议
运维·人工智能·机器人·自动化
吹风看太阳40 分钟前
机器学习08-损失函数
人工智能·机器学习
m0_7401546743 分钟前
《k-means 散点图可视化》实验报告
人工智能·机器学习·kmeans
zhz521443 分钟前
AI数字人融合VR全景:开启未来营销与交互新篇章
人工智能·ai·交互·vr·ai编程·智能体
智源研究院官方账号1 小时前
智源联合南开大学开源Chinese-LiPS中文多模态语音识别数据集
人工智能·语音识别
Thomas_YXQ1 小时前
Unity3D Overdraw性能优化详解
开发语言·人工智能·性能优化·unity3d
家庭云计算专家1 小时前
还没用过智能文档编辑器吗?带有AI插件的ONLYOFFICE介绍
服务器·人工智能·docker·容器·编辑器