【yolov7】模型导出----pytorch导出为onnx模型

【yolov7】模型导出

  • [1. 确保安装必要的库](#1. 确保安装必要的库)
  • [2. 找到训练后的模型](#2. 找到训练后的模型)
  • [3. 使用YOLOv7的导出脚本](#3. 使用YOLOv7的导出脚本)
  • [4. 检查导出的ONNX模型](#4. 检查导出的ONNX模型)

1. 确保安装必要的库

确保你已经安装了PyTorch和ONNX库。可以使用以下命令安装:

python 复制代码
pip install torch torchvision onnx

2. 找到训练后的模型

确保你知道训练后模型的路径,通常在runs/train/exp/weights目录下,文件名通常为best.ptlast.pt

3. 使用YOLOv7的导出脚本

在YOLOv7的代码库中,你可以使用以下命令来导出模型:

python 复制代码
python export.py --weights path/to/your/best.pt  --batch-size 1 --device 0 --include onnx

各个参数解释,使用适合的参数

  • --weights :指定要导出的模型权重文件(如best.pt)。
  • --include :指定导出的格式(如onnxtorchscript等)。
  • --img-size :设置输入图像的尺寸(如640)。
  • --batch-size :设置批处理大小(通常为1)。
  • --dynamic:启用动态输入尺寸。
  • --simplify:简化模型结构,减少计算复杂度。
  • --end2end:启用端到端导出。
  • --iou-thres:设置IoU阈值,用于检测结果过滤。
  • --conf-thres:设置置信度阈值。
  • --max-wh:设置最大宽高限制
  • --topk-all:设置最大输出的前K个检测结果。
  • --grid:使用网格输出。

例如:

python 复制代码
python export.py --weights best.pt --grid --end2end --simplify --topk-all 100 --iou-thres 0.65 --conf-thres 0.35 --img-size 640 640 --max-wh 640

4. 检查导出的ONNX模型

导出完成后,生成的ONNX模型文件通常位于runs/onnx/目录下。你可以使用ONNX工具来检查模型:

python 复制代码
import onnx
model = onnx.load("path/to/your/model.onnx")
onnx.checker.check_model(model)
相关推荐
祝威廉2 分钟前
摘下数据分析的皇冠:机器学习,InfiniSynapse 金融评分卡案例
人工智能·机器学习·金融·数据挖掘·数据分析
产品何同学2 分钟前
复刻DeepSeek与GPT!AI智能对话Web高保真原型设计全解析
人工智能·gpt·墨刀·高保真原型·deepseek·ai智能写作·ai智能对话
杭州泽沃电子科技有限公司4 分钟前
变流器与变压器:风电并网智能监测的“守护神”与“稳定锚”
人工智能·智能监测·发电
中國龍在廣州5 分钟前
“太空数据中心”成AI必争之地?
人工智能·深度学习·算法·机器学习·机器人
多则惑少则明5 分钟前
AI大模型实用(三)Java快速实现智能体整理(Springboot+LangChain4j)
人工智能·spring ai·langchain4j
恒星科通6 分钟前
隧道高清晰广播系统,破解隧道声学难题 为司乘安全加码
人工智能·安全
qq_12498707537 分钟前
基于Spring Boot的社区医院管理系统的设计与实现(源码+论文+部署+安装)
java·数据库·人工智能·spring boot·毕业设计
北邮刘老师9 分钟前
语音、文本、图形,哪个才是最适合智能体的UI形式?
人工智能·智能体
光羽隹衡9 分钟前
机器学习——逻辑回归
人工智能·机器学习·逻辑回归
薛不痒12 分钟前
机器学习算法之逻辑回归下
人工智能·机器学习·逻辑回归