【yolov7】模型导出----pytorch导出为onnx模型

【yolov7】模型导出

  • [1. 确保安装必要的库](#1. 确保安装必要的库)
  • [2. 找到训练后的模型](#2. 找到训练后的模型)
  • [3. 使用YOLOv7的导出脚本](#3. 使用YOLOv7的导出脚本)
  • [4. 检查导出的ONNX模型](#4. 检查导出的ONNX模型)

1. 确保安装必要的库

确保你已经安装了PyTorch和ONNX库。可以使用以下命令安装:

python 复制代码
pip install torch torchvision onnx

2. 找到训练后的模型

确保你知道训练后模型的路径,通常在runs/train/exp/weights目录下,文件名通常为best.ptlast.pt

3. 使用YOLOv7的导出脚本

在YOLOv7的代码库中,你可以使用以下命令来导出模型:

python 复制代码
python export.py --weights path/to/your/best.pt  --batch-size 1 --device 0 --include onnx

各个参数解释,使用适合的参数

  • --weights :指定要导出的模型权重文件(如best.pt)。
  • --include :指定导出的格式(如onnxtorchscript等)。
  • --img-size :设置输入图像的尺寸(如640)。
  • --batch-size :设置批处理大小(通常为1)。
  • --dynamic:启用动态输入尺寸。
  • --simplify:简化模型结构,减少计算复杂度。
  • --end2end:启用端到端导出。
  • --iou-thres:设置IoU阈值,用于检测结果过滤。
  • --conf-thres:设置置信度阈值。
  • --max-wh:设置最大宽高限制
  • --topk-all:设置最大输出的前K个检测结果。
  • --grid:使用网格输出。

例如:

python 复制代码
python export.py --weights best.pt --grid --end2end --simplify --topk-all 100 --iou-thres 0.65 --conf-thres 0.35 --img-size 640 640 --max-wh 640

4. 检查导出的ONNX模型

导出完成后,生成的ONNX模型文件通常位于runs/onnx/目录下。你可以使用ONNX工具来检查模型:

python 复制代码
import onnx
model = onnx.load("path/to/your/model.onnx")
onnx.checker.check_model(model)
相关推荐
TTGGGFF4 分钟前
控制系统建模仿真(四):线性控制系统的数学模型
人工智能·算法
UXbot12 分钟前
UI设计工具推荐合集
前端·人工智能·ui
kicikng14 分钟前
智能体来了(西南总部)实战指南:AI调度官与AI Agent指挥官的Prompt核心逻辑
人工智能·prompt·多智能体系统
抓个马尾女孩14 分钟前
为什么self-attention除以根号dk而不是其他值
人工智能·深度学习·机器学习·transformer
叫我辉哥e123 分钟前
新手进阶Python:办公看板集成ERP跨系统同步+自动备份+AI异常复盘
开发语言·人工智能·python
Loo国昌25 分钟前
【LangChain1.0】第五阶段:RAG高级篇(高级检索与优化)
人工智能·后端·语言模型·架构
伊克罗德信息科技29 分钟前
技术分享 | 用Dify搭建个人AI知识助手
人工智能
TOPGUS32 分钟前
谷歌发布三大AI购物新功能:从对话式搜索到AI代你下单
大数据·人工智能·搜索引擎·chatgpt·谷歌·seo·数字营销
Godspeed Zhao33 分钟前
从零开始学AI4——背景知识3
人工智能