【yolov7】模型导出----pytorch导出为onnx模型

【yolov7】模型导出

  • [1. 确保安装必要的库](#1. 确保安装必要的库)
  • [2. 找到训练后的模型](#2. 找到训练后的模型)
  • [3. 使用YOLOv7的导出脚本](#3. 使用YOLOv7的导出脚本)
  • [4. 检查导出的ONNX模型](#4. 检查导出的ONNX模型)

1. 确保安装必要的库

确保你已经安装了PyTorch和ONNX库。可以使用以下命令安装:

python 复制代码
pip install torch torchvision onnx

2. 找到训练后的模型

确保你知道训练后模型的路径,通常在runs/train/exp/weights目录下,文件名通常为best.ptlast.pt

3. 使用YOLOv7的导出脚本

在YOLOv7的代码库中,你可以使用以下命令来导出模型:

python 复制代码
python export.py --weights path/to/your/best.pt  --batch-size 1 --device 0 --include onnx

各个参数解释,使用适合的参数

  • --weights :指定要导出的模型权重文件(如best.pt)。
  • --include :指定导出的格式(如onnxtorchscript等)。
  • --img-size :设置输入图像的尺寸(如640)。
  • --batch-size :设置批处理大小(通常为1)。
  • --dynamic:启用动态输入尺寸。
  • --simplify:简化模型结构,减少计算复杂度。
  • --end2end:启用端到端导出。
  • --iou-thres:设置IoU阈值,用于检测结果过滤。
  • --conf-thres:设置置信度阈值。
  • --max-wh:设置最大宽高限制
  • --topk-all:设置最大输出的前K个检测结果。
  • --grid:使用网格输出。

例如:

python 复制代码
python export.py --weights best.pt --grid --end2end --simplify --topk-all 100 --iou-thres 0.65 --conf-thres 0.35 --img-size 640 640 --max-wh 640

4. 检查导出的ONNX模型

导出完成后,生成的ONNX模型文件通常位于runs/onnx/目录下。你可以使用ONNX工具来检查模型:

python 复制代码
import onnx
model = onnx.load("path/to/your/model.onnx")
onnx.checker.check_model(model)
相关推荐
大彬聊编程3 分钟前
清华大学102页PPT 《deepseek从入门到精通》
人工智能
明月与玄武8 分钟前
Apifox 增强 AI 接口调试功能:自动合并 SSE 响应、展示DeepSeek思考过程
人工智能·apifox·增强 ai 接口调试功能
虚假程序设计21 分钟前
opencv 自适应阈值
人工智能·opencv·计算机视觉
沐欣工作室_lvyiyi33 分钟前
基于物联网的家庭版防疫面罩设计与实现(论文+源码)
人工智能·stm32·单片机·物联网·目标跟踪
xzzd_jokelin43 分钟前
Spring AI 接入 DeepSeek:开启智能应用的新篇章
java·人工智能·spring·ai·大模型·rag·deepseek
简简单单做算法44 分钟前
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
人工智能·lstm·bilstm·woa-bilstm·双向长短期记忆网络·woa鲸鱼优化·序列预测
星霜旅人1 小时前
开源机器学习框架
人工智能·机器学习·开源
资源大全免费分享1 小时前
清华大学第五版《DeepSeek与AI幻觉》附五版合集下载方法
人工智能
龚大龙1 小时前
机器学习(李宏毅)——RL(强化学习)
人工智能·机器学习
LaughingZhu1 小时前
PH热榜 | 2025-02-23
前端·人工智能·经验分享·搜索引擎·产品运营