【yolov7】模型导出----pytorch导出为onnx模型

【yolov7】模型导出

  • [1. 确保安装必要的库](#1. 确保安装必要的库)
  • [2. 找到训练后的模型](#2. 找到训练后的模型)
  • [3. 使用YOLOv7的导出脚本](#3. 使用YOLOv7的导出脚本)
  • [4. 检查导出的ONNX模型](#4. 检查导出的ONNX模型)

1. 确保安装必要的库

确保你已经安装了PyTorch和ONNX库。可以使用以下命令安装:

python 复制代码
pip install torch torchvision onnx

2. 找到训练后的模型

确保你知道训练后模型的路径,通常在runs/train/exp/weights目录下,文件名通常为best.ptlast.pt

3. 使用YOLOv7的导出脚本

在YOLOv7的代码库中,你可以使用以下命令来导出模型:

python 复制代码
python export.py --weights path/to/your/best.pt  --batch-size 1 --device 0 --include onnx

各个参数解释,使用适合的参数

  • --weights :指定要导出的模型权重文件(如best.pt)。
  • --include :指定导出的格式(如onnxtorchscript等)。
  • --img-size :设置输入图像的尺寸(如640)。
  • --batch-size :设置批处理大小(通常为1)。
  • --dynamic:启用动态输入尺寸。
  • --simplify:简化模型结构,减少计算复杂度。
  • --end2end:启用端到端导出。
  • --iou-thres:设置IoU阈值,用于检测结果过滤。
  • --conf-thres:设置置信度阈值。
  • --max-wh:设置最大宽高限制
  • --topk-all:设置最大输出的前K个检测结果。
  • --grid:使用网格输出。

例如:

python 复制代码
python export.py --weights best.pt --grid --end2end --simplify --topk-all 100 --iou-thres 0.65 --conf-thres 0.35 --img-size 640 640 --max-wh 640

4. 检查导出的ONNX模型

导出完成后,生成的ONNX模型文件通常位于runs/onnx/目录下。你可以使用ONNX工具来检查模型:

python 复制代码
import onnx
model = onnx.load("path/to/your/model.onnx")
onnx.checker.check_model(model)
相关推荐
科技新知8 分钟前
大厂AI各走“开源”路
人工智能·开源
字节数据平台11 分钟前
火山引擎Data Agent再拓新场景,重磅推出用户研究Agent
大数据·人工智能·火山引擎
TGITCIC11 分钟前
LLaVA-OV:开源多模态的“可复现”革命,不只是又一个模型
人工智能·开源·多模态·ai大模型·开源大模型·视觉模型·大模型ai
GeeLark20 分钟前
GeeLark 9月功能更新回顾
人工智能
mwq3012333 分钟前
GPT-2 中的 Pre-Layer Normalization (Pre-LN) 架构详解
人工智能
智奇数美38 分钟前
“成本减法”与“效率乘法”——AI智能重构企业通信格局
人工智能·智能手机·信息与通信
技术闲聊DD1 小时前
机器学习(1)- 机器学习简介
人工智能·机器学习
mwq301231 小时前
GPT-2 中的残差权重初始化
人工智能
mwq301231 小时前
Transformer : 深度神经网络中的残差连接 (Residual Connection)
人工智能
信田君95271 小时前
瑞莎星瑞(Radxa Orion O6) 基于 Android OS 使用 NPU的图片模糊查找APP 开发
android·人工智能·深度学习·神经网络