【yolov7】模型导出----pytorch导出为onnx模型

【yolov7】模型导出

  • [1. 确保安装必要的库](#1. 确保安装必要的库)
  • [2. 找到训练后的模型](#2. 找到训练后的模型)
  • [3. 使用YOLOv7的导出脚本](#3. 使用YOLOv7的导出脚本)
  • [4. 检查导出的ONNX模型](#4. 检查导出的ONNX模型)

1. 确保安装必要的库

确保你已经安装了PyTorch和ONNX库。可以使用以下命令安装:

python 复制代码
pip install torch torchvision onnx

2. 找到训练后的模型

确保你知道训练后模型的路径,通常在runs/train/exp/weights目录下,文件名通常为best.ptlast.pt

3. 使用YOLOv7的导出脚本

在YOLOv7的代码库中,你可以使用以下命令来导出模型:

python 复制代码
python export.py --weights path/to/your/best.pt  --batch-size 1 --device 0 --include onnx

各个参数解释,使用适合的参数

  • --weights :指定要导出的模型权重文件(如best.pt)。
  • --include :指定导出的格式(如onnxtorchscript等)。
  • --img-size :设置输入图像的尺寸(如640)。
  • --batch-size :设置批处理大小(通常为1)。
  • --dynamic:启用动态输入尺寸。
  • --simplify:简化模型结构,减少计算复杂度。
  • --end2end:启用端到端导出。
  • --iou-thres:设置IoU阈值,用于检测结果过滤。
  • --conf-thres:设置置信度阈值。
  • --max-wh:设置最大宽高限制
  • --topk-all:设置最大输出的前K个检测结果。
  • --grid:使用网格输出。

例如:

python 复制代码
python export.py --weights best.pt --grid --end2end --simplify --topk-all 100 --iou-thres 0.65 --conf-thres 0.35 --img-size 640 640 --max-wh 640

4. 检查导出的ONNX模型

导出完成后,生成的ONNX模型文件通常位于runs/onnx/目录下。你可以使用ONNX工具来检查模型:

python 复制代码
import onnx
model = onnx.load("path/to/your/model.onnx")
onnx.checker.check_model(model)
相关推荐
m0_462605222 分钟前
第N8周:使用Word2vec实现文本分类
人工智能·分类·word2vec
子洋9 分钟前
LLM 原理 - 输入预处理
前端·人工智能·后端
我很哇塞耶16 分钟前
OpenAI公开新的模型训练方法:或许能解决模型撒谎问题,已在GPT-5 thiking验证
人工智能·ai·大模型·训练
小白狮ww31 分钟前
lammps 教程:npt 控温估计 FCC Cu 熔点
人工智能·深度学习·机器学习·分子动力学·lammps·npt·材料建模
TOYOAUTOMATON33 分钟前
自动化工业夹爪
大数据·人工智能·算法·目标检测·机器人
智算菩萨1 小时前
Pip与第三方库:一行命令安装 AI 能力
人工智能·pip
serve the people1 小时前
TensorFlow 基础训练循环(简化版 + 补全代码)
人工智能·python·tensorflow
Slaughter信仰1 小时前
图解大模型_生成式AI原理与实战学习笔记(第四章)
人工智能·笔记·学习
拓端研究室1 小时前
2025医疗健康行业革新报告:AI赋能、国际化|附170+份报告PDF、数据、可视化模板汇总下载
人工智能·pdf
DisonTangor1 小时前
iMontage: 统一、多功能、高度动态的多对多图像生成
人工智能·ai作画·开源·aigc