数据流处理技术与Flink框架

一·数据流

数据流定义:

数据流(Data Stream)是指数据以连续不断的方式到达和处理的序列。在现实世界中,许多数据来源都是以流的形式存在,比如:

  1. 用户行为:用户在网站上的点击流、移动应用中的用户行为、社交媒体上的互动等。

  2. 金融交易:股票市场中的交易记录、银行系统中的转账记录等。

  3. 传感器数据:来自物联网设备(IoT)的实时数据,如温度、湿度、压力传感器等。

  4. 日志文件:服务器日志、应用程序日志等,这些日志通常是连续生成的。

  5. 网络流量:网络中的通信数据包,如路由器和交换机处理的数据。

数据流特点:

连续性:数据流是连续不断产生的,没有明确的开始和结束。

实时性:数据流需要实时或近实时的处理和分析。

大规模:数据流往往涉及大量的数据,需要能够扩展到大规模处理的系统。

有序性:数据流中的事件通常有一个固有的顺序,比如事件发生的时间顺序。

不确定性:数据流中的事件可能不完整、延迟到达或乱序到达。

二·数据流处理

怎么处理数据流------数据流处理是指对持续不断流入的数据进行实时处理和分析的过程

首先明白处理数据流的系统通常需要具备以下能力:

容错性:系统能够处理节点故障、网络问题等异常情况。

可扩展性:系统能够随着数据量的增加而水平扩展。

低延迟:系统能够快速处理数据,减少数据处理的时间

高吞吐量:系统能够处理高数据流速。

数据流处理流程:

1.数据采集:数据流可能来自多种源头,如传感器、在线事务、社交媒体、应用程序等。

2.数据预处理:包括清洗、过滤、格式化等,以确保数据质量。

3.数据流处理:使用流处理框架对数据进行实时分析和计算。

4.状态管理:在流处理中维护和更新状态信息,用于跟踪历史数据和上下文。

5.容错处理:确保系统在发生故障时能够恢复,并保证数据处理的一致性。

6.输出结果:将处理后的数据写入外部系统,如数据库、文件系统或实时仪表板。

7.监控和优化:监控处理性能和数据流的健康状况,并根据需要进行优化。

三·flink数据流处理框架

流处理框架(如 Apache Flink、Apache Storm、Apache Kafka Streams)专门设计用于处理数据流,它们提供了工具和 API 来构建能够实时分析和响应数据流的应用程序。

今天主要来说下flink数据流处理框架:

Flink 是一个开源的流处理框架,它能够处理无界和有界的数据流,提供高吞吐量、低延迟、容错等特性。Flink 通过其独特的架构和核心概念,能够实现实时数据流的处理。

Flink 架构

Flink 的架构主要由以下几个核心组件构成:

  1. JobManager:负责协调和调度 Flink 任务的执行,管理任务的生命周期和故障恢复 。

  2. TaskManager:负责执行实际的数据流处理任务,每个 TaskManager 包含多个 slots,用于执行不同的任务 。

  3. StateBackend:StateBackend 定义了状态的存储方式,Flink 使用它来存储和管理状态数据

用来存储中间状态,支持故障恢复机制,可以是内存、文件系统或其他持久化存储 。

  1. Checkpoint Coordinator:Checkpoint Coordinator 是 JobManager 中的一个组件,负责协调检查点(Checkpoint)的流程

在 JobManager 中负责触发 Checkpoint,确保在发生故障时可以从最近的状态恢复作业 。

  1. ExecutionVertices:ExecutionVertices 是 Flink 作业中的执行单元,对应于数据流图中的一个算子或一组并行的算子。实际执行任务的组件,每一个都是 TaskManager 上的一个线程或进程 。

Flink 处理数据流的机制包括以下几个关键步骤:

  1. 数据摄入:数据流从源头(如 Kafka、文件系统、数据库等)被摄入 Flink。

  2. 数据转换:摄入的数据流经过一系列的转换操作,如 map、filter、keyBy、reduce、join 等,这些操作可以是无界的,也可以是有界的。

  3. 状态管理:Flink 提供了强大的状态管理机制,允许应用程序维护跨事件的状态。状态可以是键控的,也可以是 operator 状态 。

  4. 容错处理:Flink 使用 Checkpoint 机制来实现容错,通过周期性地对状态进行快照存储,确保系统能够在发生故障时恢复到最近的状态 。

  5. 窗口操作:Flink 支持基于时间的窗口操作,允许对数据流进行分片处理,常见的窗口类型包括滚动窗口、滑动窗口和会话窗口 。

  6. 输出结果:处理后的数据可以输出到外部系统,如数据库、文件系统或其他存储系统。

Flink 的关键特性

高吞吐量、低延迟:Flink 的流处理引擎能够在毫秒级别处理数据,满足低延迟的应用需求。

容错和一致性:通过 Checkpoint 机制,保证数据处理的一致性和容错性 。

灵活的时间处理:Flink 支持事件时间、处理时间和摄入时间,提供灵活的时间处理功能 。

动态扩展:Flink 支持动态扩展,可以根据负载变化调整计算资源

Flink 的这些特性使其成为处理大规模实时数据流的强大工具,适用于各种实时数据处理场景,如实时监控、实时推荐系统、实时风控等。

了解更多数据处理与数据集成关干货内容请关注>>>FineDataLink官网

免费试用、获取更多信息,点击了解更多>>>体验FDL功能

相关推荐
南城花随雪。8 分钟前
硬盘(HDD)与固态硬盘(SSD)详细解读
数据库
儿时可乖了9 分钟前
使用 Java 操作 SQLite 数据库
java·数据库·sqlite
懒是一种态度11 分钟前
Golang 调用 mongodb 的函数
数据库·mongodb·golang
天海华兮13 分钟前
mysql 去重 补全 取出重复 变量 函数 和存储过程
数据库·mysql
智慧化智能化数字化方案16 分钟前
华为IPD流程管理体系L1至L5最佳实践-解读
大数据·华为
gma9991 小时前
Etcd 框架
数据库·etcd
爱吃青椒不爱吃西红柿‍️1 小时前
华为ASP与CSP是什么?
服务器·前端·数据库
PersistJiao1 小时前
在 Spark RDD 中,sortBy 和 top 算子的各自适用场景
大数据·spark·top·sortby
2301_811274312 小时前
大数据基于Spring Boot的化妆品推荐系统的设计与实现
大数据·spring boot·后端
Yz98762 小时前
hive的存储格式
大数据·数据库·数据仓库·hive·hadoop·数据库开发