大模型增量训练--基于transformer制作一个大模型聊天机器人

针对夸夸闲聊数据集,利用UniLM模型进行模型训练及测试,更深入地了解预训练语言模型的使用方法,完成一个生成式闲聊机器人任务。

项目主要结构如下:

  • data 存放数据的文件夹
    • dirty_word.txt 敏感词数据
    • douban_kuakua_qa.txt 原始语料 【数据量:大概20M的样子】==》用于增量训练
    • sample.json 处理后的语料样例
  • kuakua_robot_model 已训练好的模型路径
    • config.json
    • pytorch_model.bin
    • vocab.txt
  • pretrain_model UniLm预训练文件路径
    • config.json
    • pytorch_model.bin
    • vocab.txt
  • chatbot.py 模型推理文件
  • configuration_unilm.py UniLm配置文件
  • data_helper.py 数据预处理文件
  • data_set.py 数据类文件
  • modeling_unilm.py UniLm模型文件
  • train.py 模型训练文件
  • dirty_recognize.py 敏感词检测文件

增量训练的数据样例:

1  Q: 要去打球赛了求表扬
2  A: 真棒好好打乒乓球!
3  Q: 要去打球赛了求表扬
4  A: 是篮球哈哈哈
5  Q: 要去打球赛了求表扬
6  A: 篮板王就是你!
7  Q: 要去打球赛了求表扬
8  A: 加油别把鞋踢脏喽
9  Q: 要去打球赛了求表扬
10 A: 多买点儿币!
11 Q: 要去打球赛了求表扬
12 A: 已经脏了
13 Q: 要去打球赛了求表扬
14 A: 好滴
15 Q: 要去打球赛了求表扬
16 A: 这个配色是是真心不太合我的胃口,还有为什么白鞋要配黑袜子
17 Q: 要去打球赛了求表扬
18 A: 这不是表扬组吗hhh你咋来拆台
19 Q: 要去打球赛了求表扬
20 A: 我不是,我没有,别瞎说哈
21 Q: 要去打球赛了求表扬
22 A: 全场最帅(・ัω・ั),卡胃踩脚拇指戳肋骨无毒神掌天下无敌,然后需要代打嘛
23 Q: 要去打球赛了求表扬
24 A: 你走!
25 Q: 要去打球赛了求表扬
26 A: 8要!
27 Q: 要去打球赛了求表扬
28 A: 我不,我还想问问什么鞋码,多高多重,打什么位置的

注意:由于GitHub不方便放模型文件,因此data文件中douban_kuakua_qa.txt文件、kuakua_robot_model文件夹和pretrain_model文件夹中的模型bin文件,请从百度云盘中下载。【bert模型大小:400MB,用于增量训练的模型,应该是来自https://huggingface.co/bert-base-chinese/tree/main下载的原始bert文件】

文件名称 下载地址 提取码
pretrain_model 百度云 7h4a
kuakua_robot_model 百度云 j954
data 百度云 3sz3

由于敏感词表中包含大量敏感词,导致百度云的data链接会失效,因此将敏感词之间放到项目的data目录下。

环境配置

模型训练或推理所需环境,请参考requirements.txt文件。

数据处理

数据预处理需要运行data_helper.py文件,会在data文件夹中生成训练集和测试集文件。

命令如下:

python3 data_helper.py

注意:如果需要修改数据生成路径或名称,请修改data_helper.py文件147-150行,自行定义。

模型训练

模型训练需要运行train.py文件,会自动生成output_dir文件夹,存放每个epoch保存的模型文件。

命令如下:

python3 train.py --device 0 \
                 --data_dir "data/" \
                 --src_file "train.json" \
                 --model_name_or_path "pretrain_model/" \
                 --max_seq_length 256 \
                 --train_batch_size 16 \
                 --num_train_epochs 10  

注意:当服务器资源不同或读者更换数据等时,可以在模型训练时修改响应参数,详细参数说明见代码或阅读书3.5.4小节。

模型训练示例如下:

模型训练阶段损失值变化如下:

模型推理

模型训练需要运行chatbot.py文件,可以采用项目中以提供的模型,也可以采用自己训练后的模型。

命令如下:

python3 chatbot.py --device 0 --topk 3 --topp 0.95 --max_len 32

注意:如果修改模型路径,请修改--model_path参数。

模型推理示例如下:

makefile 复制代码
USER:工作不开心
CHAT-BOT:我也是,不过现在开始努力找工作啦!一起加油鸭~
USER:工作不开心
CHAT-BOT:那就祝福你,能找到喜欢的工作吧。
USER:工作不开心
CHAT-BOT:你也要加油鸭!
USER:工作不开心
CHAT-BOT:我也是,不过总有一天就会好起来的
样例2
USER:我分手了
CHAT-BOT:分手快乐,你会遇到更好的。
USER:我分手了
CHAT-BOT:旧的不去新的不来,你会遇见更好的
USER:我分手了
CHAT-BOT:分的好,下一个更乖
样例3
USER:好想去吃火锅,但是我在减肥
CHAT-BOT:你好棒!一定会瘦下来的!
USER:好像去吃火锅,但是我在减肥
CHAT-BOT:吃火锅是为了能更好的减肥,你真棒!


我自己没有gpu,训练了一天,运行的流程如下:
D:\book\ChatGPTBook``-``main\UniLMProj 的目录``2023``-``09``-``25` `17``:``54`  `<``DIR``>     .``2023``-``09``-``25` `17``:``22`  `<``DIR``>     ..``2023``-``09``-``25` `17``:``22`       `5``,``530` `chatbot.py``2023``-``09``-``25` `17``:``22`       `2``,``153` `configuration_unilm.py``2023``-``09``-``25` `21``:``04`  `<``DIR``>     data``2023``-``09``-``25` `17``:``22`       `4``,``375` `data_helper.py``2023``-``09``-``25` `17``:``22`       `9``,``173` `data_set.py``2023``-``09``-``25` `17``:``22`       `1``,``304` `dirty_recognize.py``2023``-``09``-``25` `17``:``22`  `<``DIR``>     images``2023``-``09``-``25` `17``:``22`  `<``DIR``>     kuakua_robot_model``2023``-``09``-``25` `17``:``22`      `13``,``452` `modeling_unilm.py``2023``-``09``-``25` `17``:``22`  `<``DIR``>     pretrain_model``2023``-``09``-``25` `17``:``22`       `4``,``199` `README.md``2023``-``09``-``25` `17``:``22`        `88` `requirements.txt``2023``-``09``-``25` `17``:``22`       `8``,``337` `train.py``2023``-``09``-``25` `17``:``22`       `1``,``861` `trie.py``2023``-``09``-``25` `17``:``54`  `<``DIR``>     __pycache__``       ``10` `个文件     ``50``,``472` `字节``        ``7` `个目录 ``175``,``152``,``689``,``152` `可用字节` `D:\book\ChatGPTBook``-``main\UniLMProj>python data_helper.py``total number of data: ``121687` `D:\book\ChatGPTBook``-``main\UniLMProj>``dir` `data`` ``驱动器 D 中的卷是 Data`` ``卷的序列号是 CA99``-``555E` ` ``D:\book\ChatGPTBook``-``main\UniLMProj\data 的目录` `2023``-``09``-``25` `21``:``06`  `<``DIR``>     .``2023``-``09``-``25` `17``:``54`  `<``DIR``>     ..``2023``-``09``-``25` `17``:``22`      `245``,``546` `dirty_words.txt``2023``-``09``-``25` `17``:``56`    `21``,``620``,``763` `douban_kuakua_qa.txt``2023``-``09``-``25` `17``:``22`        `446` `sample.json``2023``-``09``-``25` `21``:``06`    `14``,``272``,``447` `train.json``        ``4` `个文件   ``36``,``139``,``202` `字节``        ``2` `个目录 ``175``,``138``,``414``,``592` `可用字节` `D:\book\ChatGPTBook``-``main\UniLMProj>python train.py``Traceback (most recent call last):`` ``File` `"D:\book\ChatGPTBook-main\UniLMProj\train.py"``, line ``18``, ``in` `<module>``  ``import` `torch``ModuleNotFoundError: No module named ``'torch'` `D:\book\ChatGPTBook``-``main\UniLMProj>pip install torch`` ` `D:\book\ChatGPTBook``-``main\UniLMProj>pip install torch`` ` `D:\book\ChatGPTBook``-``main\UniLMProj>``D:\book\ChatGPTBook``-``main\UniLMProj>python train.py``Traceback (most recent call last):`` ``File` `"D:\book\ChatGPTBook-main\UniLMProj\train.py"``, line ``20``, ``in` `<module>``  ``from` `transformers ``import` `BertTokenizer``ModuleNotFoundError: No module named ``'transformers'` `D:\book\ChatGPTBook``-``main\UniLMProj>pip install transformers`` ` `D:\book\ChatGPTBook``-``main\UniLMProj>python train.py``Traceback (most recent call last):`` ``File` `"D:\book\ChatGPTBook-main\UniLMProj\train.py"``, line ``170``, ``in` `<module>``  ``main()`` ``File` `"D:\book\ChatGPTBook-main\UniLMProj\train.py"``, line ``86``, ``in` `main``  ``model ``=` `UnilmForSeq2Seq.from_pretrained(args.model_name_or_path, config``=``config)``      ``^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^`` ``File` `"C:\Python311\Lib\site-packages\transformers\modeling_utils.py"``, line ``2740``, ``in` `from_pretrained``  ``raise` `EnvironmentError(``OSError: Error no ``file` `named pytorch_model.``bin``, tf_model.h5, model.ckpt.index ``or` `flax_model.msgpack found ``in` `directory pretrain_model``/``.` `D:\book\ChatGPTBook``-``main\UniLMProj>python train.py``Loading Train Dataset data``/``convert seq2seq example: ``108730it` `[``00``:``29``, ``3741.34it``/``s]``Load ``108730` `data``C:\Python311\Lib\site``-``packages\transformers\optimization.py:``411``: FutureWarning: This implementation of AdamW ``is` `deprecated ``and` `will be removed ``in` `a future version. Use the PyTorch implementation torch.optim.AdamW instead, ``or` `set` ``no_deprecation_warning``=``True```to disable this warning`` ``warnings.warn(``09``/``25``/``2023` `21``:``45``:``57` `-` `INFO ``-` `__main__ ``-`  `*``*``*``*``*` `CUDA.empty_cache() ``*``*``*``*``*``09``/``25``/``2023` `21``:``45``:``57` `-` `INFO ``-` `__main__ ``-`  `*``*``*``*``*` `Running training ``*``*``*``*``*``09``/``25``/``2023` `21``:``45``:``57` `-` `INFO ``-` `__main__ ``-`   `Batch size ``=` `16``09``/``25``/``2023` `21``:``45``:``57` `-` `INFO ``-` `__main__ ``-`   `Num steps ``=` `67960``Epoch:  ``0``%``|                                          | ``0``/``10` `[``00``:``00``<?, ?it``/``s]C:\Python311\Lib\site``-``packages\torch\optim\lr_scheduler.py:``265``: UserWarning: To get the last learning rate computed by the scheduler, please use `get_last_lr()`.`` ``warnings.warn(``"To get the last learning rate computed by the scheduler, "``Iter` `(loss``=``3.279``): ``100``%``|████████████████████████████████████████████████████████| ``6796``/``6796` `[``25``:``32``:``28``<``00``:``00``, ``13.53s``/``it]``09``/``26``/``2023` `23``:``18``:``26` `-` `INFO ``-` `__main__ ``-`  `*``*` `*``*` `*` `Saving fine``-``tuned model ``and` `optimizer ``*``*` `*``*` `*` `32``:``28``<``00``:``00``, ``9.24s``/``it]``Epoch: ``10``%``|██████▌                              | ``1``/``10` `[``25``:``32``:``29``<``229``:``52``:``22``, ``91949.11s``/``it]``Iter` `(loss``=``3.525``): ``31``%``|████████████████▎                  | ``2096``/``6796` `[``10``:``55``:``33``<``16``:``16``:``17``, ``12.46s``/``it]

训练了一天,最后的聊天效果:

D:\book\ChatGPTBook``-``main\UniLMProj>python chatbot.py ``-``-``topk ``3` `-``-``topp ``0.95` `-``-``max_len ``32` `-``-``model_name_or_path output_dir\checkpoint``-``6796``\``cpu``Chitchat Robot Starting``user:你好啊``chat``-``bot:这么可爱的人真的很有缘分呢,你是最棒了!``user:终于训练好了一个大模型机器人了``chat``-``bot:好厉害!我也想学,但是还是没有做到``user:哈哈哈``chat``-``bot:你真的很可爱!我也是,但不想被表扬。``user:大模型是什么呢?``chat``-``bot:我们一起努力吧!``user:你是谁?``chat``-``bot:我是你!``user:你逗我呢``chat``-``bot:你也是个可爱的小可爱,我们一起夸

我们来分析下模型源码:

import` `copy``import` `math``import` `logging``import` `torch``from` `torch ``import` `nn``import` `torch.nn.functional as F``from` `torch.nn.modules.loss ``import` `_Loss``from` `transformers.modeling_utils ``import` `PreTrainedModel``from` `configuration_unilm ``import` `UnilmConfig``from` `transformers.models.bert.modeling_bert ``import` `load_tf_weights_in_bert, BertPooler, BertIntermediate, BertOutput, \``  ``BertSelfOutput, BertOnlyMLMHead, BertEmbeddings` `logger ``=` `logging.getLogger(__name__)` `BertLayerNorm ``=` `torch.nn.LayerNorm` `class` `BertSelfAttention(nn.Module):``  ``def` `__init__(``self``, config):``    ``super``(BertSelfAttention, ``self``).__init__()``    ``if` `config.hidden_size ``%` `config.num_attention_heads !``=` `0``:``      ``raise` `ValueError(``        ``"The hidden size (%d) is not a multiple of the number of attention "``        ``"heads (%d)"` `%` `(config.hidden_size, config.num_attention_heads))``    ``self``.num_attention_heads ``=` `config.num_attention_heads``    ``self``.attention_head_size ``=` `int``(``      ``config.hidden_size ``/` `config.num_attention_heads)``    ``self``.all_head_size ``=` `self``.num_attention_heads ``*` `self``.attention_head_size` `    ``self``.query ``=` `nn.Linear(config.hidden_size, ``self``.all_head_size)``    ``self``.key ``=` `nn.Linear(config.hidden_size, ``self``.all_head_size)``    ``self``.value ``=` `nn.Linear(config.hidden_size, ``self``.all_head_size)` `    ``self``.dropout ``=` `nn.Dropout(config.attention_probs_dropout_prob)` `  ``def` `transpose_for_scores(``self``, x):``    ``sz ``=` `x.size()[:``-``1``] ``+` `(``self``.num_attention_heads,``               ``self``.attention_head_size)``    ``x ``=` `x.view(``*``sz)``    ``return` `x.permute(``0``, ``2``, ``1``, ``3``)` `  ``def` `forward(``self``, hidden_states, attention_mask, history_states``=``None``):``    ``if` `history_states ``is` `None``:``      ``mixed_query_layer ``=` `self``.query(hidden_states)``      ``mixed_key_layer ``=` `self``.key(hidden_states)``      ``mixed_value_layer ``=` `self``.value(hidden_states)``    ``else``:``      ``x_states ``=` `torch.cat((history_states, hidden_states), dim``=``1``)``      ``mixed_query_layer ``=` `self``.query(hidden_states)``      ``mixed_key_layer ``=` `self``.key(x_states)``      ``mixed_value_layer ``=` `self``.value(x_states)` `    ``query_layer ``=` `self``.transpose_for_scores(mixed_query_layer)``    ``key_layer ``=` `self``.transpose_for_scores(mixed_key_layer)``    ``value_layer ``=` `self``.transpose_for_scores(mixed_value_layer)` `    ``attention_scores ``=` `torch.matmul(``      ``query_layer ``/` `math.sqrt(``self``.attention_head_size), key_layer.transpose(``-``1``, ``-``2``))``    ``attention_scores ``=` `attention_scores ``+` `attention_mask` `    ``attention_probs ``=` `nn.Softmax(dim``=``-``1``)(attention_scores)` `    ``attention_probs ``=` `self``.dropout(attention_probs)` `    ``context_layer ``=` `torch.matmul(attention_probs, value_layer)``    ``context_layer ``=` `context_layer.permute(``0``, ``2``, ``1``, ``3``).contiguous()``    ``new_context_layer_shape ``=` `context_layer.size()[``                 ``:``-``2``] ``+` `(``self``.all_head_size,)``    ``context_layer ``=` `context_layer.view(``*``new_context_layer_shape)``    ``return` `context_layer` `class` `BertAttention(nn.Module):``  ``def` `__init__(``self``, config):``    ``super``(BertAttention, ``self``).__init__()``    ``self``.``self` `=` `BertSelfAttention(config)``    ``self``.output ``=` `BertSelfOutput(config)` `  ``def` `forward(``self``, input_tensor, attention_mask, history_states``=``None``):``    ``self_output ``=` `self``.``self``(``      ``input_tensor, attention_mask, history_states``=``history_states)``    ``attention_output ``=` `self``.output(self_output, input_tensor)``    ``return` `attention_output` `class` `BertLayer(nn.Module):``  ``def` `__init__(``self``, config):``    ``super``(BertLayer, ``self``).__init__()``    ``self``.attention ``=` `BertAttention(config)``    ``self``.intermediate ``=` `BertIntermediate(config)``    ``self``.output ``=` `BertOutput(config)` `  ``def` `forward(``self``, hidden_states, attention_mask, history_states``=``None``):``    ``attention_output ``=` `self``.attention(``      ``hidden_states, attention_mask, history_states``=``history_states)``    ``intermediate_output ``=` `self``.intermediate(attention_output)``    ``layer_output ``=` `self``.output(intermediate_output, attention_output)``    ``return` `layer_output` `class` `BertEncoder(nn.Module):``  ``def` `__init__(``self``, config):``    ``super``(BertEncoder, ``self``).__init__()``    ``layer ``=` `BertLayer(config)``    ``self``.layer ``=` `nn.ModuleList([copy.deepcopy(layer)``                  ``for` `_ ``in` `range``(config.num_hidden_layers)])` `  ``def` `forward(``self``, hidden_states, attention_mask, output_all_encoded_layers``=``True``, prev_embedding``=``None``,``        ``prev_encoded_layers``=``None``):``    ``assert` `(prev_embedding ``is` `None``) ``=``=` `(prev_encoded_layers ``is` `None``)` `    ``all_encoder_layers ``=` `[]``    ``if` `(prev_embedding ``is` `not` `None``) ``and` `(prev_encoded_layers ``is` `not` `None``):``      ``history_states ``=` `prev_embedding``      ``for` `i, layer_module ``in` `enumerate``(``self``.layer):``        ``hidden_states ``=` `layer_module(``          ``hidden_states, attention_mask, history_states``=``history_states)``        ``if` `output_all_encoded_layers:``          ``all_encoder_layers.append(hidden_states)``        ``if` `prev_encoded_layers ``is` `not` `None``:``          ``history_states ``=` `prev_encoded_layers[i]``    ``else``:``      ``for` `layer_module ``in` `self``.layer:``        ``hidden_states ``=` `layer_module(``          ``hidden_states, attention_mask)``        ``if` `output_all_encoded_layers:``          ``all_encoder_layers.append(hidden_states)``    ``if` `not` `output_all_encoded_layers:``      ``all_encoder_layers.append(hidden_states)``    ``return` `all_encoder_layers` `class` `UnilmPreTrainedModel(PreTrainedModel):``  ``config_class ``=` `UnilmConfig``  ``load_tf_weights ``=` `load_tf_weights_in_bert``  ``base_model_prefix ``=` `"unilm"` `  ``def` `_init_weights(``self``, module):``    ``if` `isinstance``(module, (nn.Linear, nn.Embedding)):``      ``module.weight.data.normal_(mean``=``0.0``, std``=``self``.config.initializer_range)``    ``elif` `isinstance``(module, BertLayerNorm):``      ``module.bias.data.zero_()``      ``module.weight.data.fill_(``1.0``)``    ``if` `isinstance``(module, nn.Linear) ``and` `module.bias ``is` `not` `None``:``      ``module.bias.data.zero_()` `class` `UnilmModel(UnilmPreTrainedModel):``  ``def` `__init__(``self``, config):``    ``super``(UnilmModel, ``self``).__init__(config)``    ``self``.embeddings ``=` `BertEmbeddings(config)``    ``self``.encoder ``=` `BertEncoder(config)``    ``self``.pooler ``=` `BertPooler(config)``    ``self``.init_weights()` `  ``def` `get_extended_attention_mask(``self``, input_ids, token_type_ids, attention_mask):``    ``if` `attention_mask ``is` `None``:``      ``attention_mask ``=` `torch.ones_like(input_ids)``    ``if` `token_type_ids ``is` `None``:``      ``token_type_ids ``=` `torch.zeros_like(input_ids)` `    ``if` `attention_mask.dim() ``=``=` `2``:``      ``extended_attention_mask ``=` `attention_mask.unsqueeze(``1``).unsqueeze(``2``)``    ``elif` `attention_mask.dim() ``=``=` `3``:``      ``extended_attention_mask ``=` `attention_mask.unsqueeze(``1``)``    ``else``:``      ``raise` `NotImplementedError``    ``extended_attention_mask ``=` `extended_attention_mask.to(``      ``dtype``=``next``(``self``.parameters()).dtype) ``# fp16 compatibility``    ``extended_attention_mask ``=` `(``1.0` `-` `extended_attention_mask) ``*` `-``10000.0``    ``return` `extended_attention_mask` `  ``def` `forward(``self``, input_ids, token_type_ids``=``None``, attention_mask``=``None``, output_all_encoded_layers``=``True``):``    ``extended_attention_mask ``=` `self``.get_extended_attention_mask(``      ``input_ids, token_type_ids, attention_mask)` `    ``embedding_output ``=` `self``.embeddings(``      ``input_ids, token_type_ids)``    ``encoded_layers ``=` `self``.encoder(embedding_output, extended_attention_mask,``                   ``output_all_encoded_layers``=``output_all_encoded_layers)``    ``sequence_output ``=` `encoded_layers[``-``1``]``    ``pooled_output ``=` `self``.pooler(sequence_output)``    ``if` `not` `output_all_encoded_layers:``      ``encoded_layers ``=` `encoded_layers[``-``1``]``    ``return` `encoded_layers, pooled_output` `class` `LabelSmoothingLoss(_Loss):``  ``def` `__init__(``self``, label_smoothing``=``0``, tgt_vocab_size``=``0``, ignore_index``=``0``, size_average``=``None``, ``reduce``=``None``,``         ``reduction``=``'mean'``):``    ``assert` `0.0` `< label_smoothing <``=` `1.0``    ``self``.ignore_index ``=` `ignore_index``    ``super``(LabelSmoothingLoss, ``self``).__init__(``      ``size_average``=``size_average, ``reduce``=``reduce``, reduction``=``reduction)` `    ``assert` `label_smoothing > ``0``    ``assert` `tgt_vocab_size > ``0` `    ``smoothing_value ``=` `label_smoothing ``/` `(tgt_vocab_size ``-` `2``)``    ``one_hot ``=` `torch.full((tgt_vocab_size,), smoothing_value)``    ``one_hot[``self``.ignore_index] ``=` `0``    ``self``.register_buffer(``'one_hot'``, one_hot.unsqueeze(``0``))``    ``self``.confidence ``=` `1.0` `-` `label_smoothing``    ``self``.tgt_vocab_size ``=` `tgt_vocab_size` `  ``def` `forward(``self``, output, target):``    ``assert` `self``.tgt_vocab_size ``=``=` `output.size(``2``)``    ``batch_size, num_pos ``=` `target.size(``0``), target.size(``1``)``    ``output ``=` `output.view(``-``1``, ``self``.tgt_vocab_size)``    ``target ``=` `target.view(``-``1``)``    ``model_prob ``=` `self``.one_hot.repeat(target.size(``0``), ``1``)``    ``model_prob.scatter_(``1``, target.unsqueeze(``1``), ``self``.confidence)``    ``model_prob.masked_fill_((target ``=``=` `self``.ignore_index).unsqueeze(``1``), ``0``)` `    ``return` `F.kl_div(output, model_prob.type_as(output), reduction``=``'none'``).view(batch_size, num_pos, ``-``1``).``sum``(``2``)` `class` `UnilmForSeq2Seq(UnilmPreTrainedModel):``  ``"""UniLM模型进行Seq2Seq的训练模型类"""` `  ``def` `__init__(``self``, config):``    ``"""模型初始化函数,定义模型训练所需的各个模块"""``    ``super``(UnilmForSeq2Seq, ``self``).__init__(config)``    ``self``.bert ``=` `UnilmModel(config)``    ``self``.``cls` `=` `BertOnlyMLMHead(config)``    ``self``.mask_lm ``=` `nn.CrossEntropyLoss(reduction``=``'none'``)``    ``if` `hasattr``(config, ``'label_smoothing'``) ``and` `config.label_smoothing:``      ``self``.mask_lm_smoothed ``=` `LabelSmoothingLoss(config.label_smoothing, config.vocab_size, ignore_index``=``0``,``                            ``reduction``=``'none'``)``    ``else``:``      ``self``.mask_lm_smoothed ``=` `None``    ``self``.init_weights()``    ``self``.tie_weights()` `  ``def` `tie_weights(``self``):``    ``"""权重加载,加载预训练模型的embeddings部分权重"""``    ``self``._tie_or_clone_weights(``self``.``cls``.predictions.decoder,``                  ``self``.bert.embeddings.word_embeddings)` `  ``def` `forward(``self``, input_ids, token_type_ids``=``None``, attention_mask``=``None``, masked_lm_labels``=``None``, masked_pos``=``None``,``        ``masked_weights``=``None``):``    ``"""模型forward,向前传递函数"""``    ``# 获取Encoder部分的序列输出,维度[bs,seq_len,hidden_size]``    ``sequence_output, __ ``=` `self``.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers``=``False``)` `    ``def` `gather_seq_out_by_pos(seq, pos):``      ``return` `torch.gather(seq, ``1``, pos.unsqueeze(``2``).expand(``-``1``, ``-``1``, seq.size(``-``1``)))` `    ``def` `loss_mask_and_normalize(loss, mask):``      ``mask ``=` `mask.type_as(loss)``      ``loss ``=` `loss ``*` `mask``      ``denominator ``=` `torch.``sum``(mask) ``+` `1e``-``5``      ``return` `(loss ``/` `denominator).``sum``()` `    ``if` `masked_lm_labels ``is` `None``:``      ``if` `masked_pos ``is` `None``:``        ``prediction_scores ``=` `self``.``cls``(sequence_output)``      ``else``:``        ``sequence_output_masked ``=` `gather_seq_out_by_pos(sequence_output, masked_pos)``        ``prediction_scores ``=` `self``.``cls``(sequence_output_masked)``      ``return` `prediction_scores``    ``# 获取被掩码位置的向量``    ``sequence_output_masked ``=` `gather_seq_out_by_pos(sequence_output, masked_pos)``    ``prediction_scores_masked ``=` `self``.``cls``(sequence_output_masked)``    ``if` `self``.mask_lm_smoothed:``      ``masked_lm_loss ``=` `self``.mask_lm_smoothed(F.log_softmax(prediction_scores_masked.``float``(), dim``=``-``1``),``                          ``masked_lm_labels)``    ``else``:``      ``masked_lm_loss ``=` `self``.mask_lm(prediction_scores_masked.transpose(``1``, ``2``).``float``(), masked_lm_labels)``    ``# 计算[Mask]标记的损失值``    ``masked_lm_loss ``=` `loss_mask_and_normalize(masked_lm_loss.``float``(), masked_weights)` `    ``return` `masked_lm_loss` `class` `UnilmForSeq2SeqDecodeSample(UnilmPreTrainedModel):``  ``"""UniLM模型进行Seq2Seq的模型解码类"""``  ``def` `__init__(``self``, config):``    ``"""模型初始化函数,定义模型训练所需的各个模块"""``    ``super``(UnilmForSeq2SeqDecodeSample, ``self``).__init__(config)``    ``self``.bert ``=` `UnilmModel(config)``    ``self``.``cls` `=` `BertOnlyMLMHead(config)``    ``self``.init_weights()``    ``self``.tie_weights()` `  ``def` `tie_weights(``self``):``    ``"""权重加载,加载预训练模型的embeddings部分权重"""``    ``self``._tie_or_clone_weights(``self``.``cls``.predictions.decoder, ``self``.bert.embeddings.word_embeddings)` `  ``def` `forward(``self``, input_ids, token_type_ids, attention_mask):``    ``# 获取Encoder部分的序列输出,维度[bs,seq_len,hidden_size]``    ``sequence_output, __ ``=` `self``.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers``=``False``)``    ``# 获取最优一个节点的输出``    ``last_hidden ``=` `sequence_output[:, ``-``1``:, :]``    ``# 将其映射到词表中,为后面解码提供内容``    ``prediction_scores ``=` `self``.``cls``(last_hidden)``    ``return` `prediction_scores

文件定义了一个基于UniLM(Unified Language Model)的Seq2Seq模型,主要用于序列生成任务。UniLM是一种预训练的语言模型,它在单一的语言模型架构下整合了双向和单向的语言模型。

文件中定义了以下几个主要的类:

\1. BertSelfAttention:这是一个自注意力机制的实现,用于计算输入序列中每个元素的注意力分数。

\2. BertAttention、BertLayer、BertEncoder:这些类是BERT模型的主要组成部分,用于处理输入序列并生成隐藏状态。

\3. UnilmPreTrainedModel:这是一个预训练模型的基类,定义了权重初始化和加载预训练权重的方法。

\4. UnilmModel:这是UniLM模型的主要实现,它包含了BERT的嵌入层、编码器和池化层。

\5. LabelSmoothingLoss:这是一个实现了标签平滑的损失函数,用于训练过程中减少模型对于标签的过拟合。

\6. UnilmForSeq2Seq:这是一个用于序列到序列任务的UniLM模型,它在UnilmModel的基础上添加了一个预测头,用于预测下一个词。

\7. UnilmForSeq2SeqDecodeSample:这是一个用于序列到序列任务的解码器,它使用UnilmModel生成的隐藏状态,通过预测头生成下一个词的预测。

总的来说,这个文件定义的模型结构主要用于处理序列到序列的任务,如机器翻译、文本摘要等。模型的最终目标是根据输入的序列生成一个新的序列。

【模型训练】

这个训练代码使用的模型是UnilmForSeq2Seq,这是一个基于UniLM(Unified Language Model)的序列到序列模型。这个模型主要用于处理序列生成任务,如机器翻译、文本摘要等。在代码中,模型的加载过程如下:

config = UnilmConfig.from_pretrained(args.model_name_or_path)

tokenizer = BertTokenizer.from_pretrained(args.model_name_or_path, do_lower_case=args.do_lower_case)

model = UnilmForSeq2Seq.from_pretrained(args.model_name_or_path, config=config)

model.to(device)

这段代码首先从预训练模型的路径加载UniLM的配置和BERT的分词器,然后使用这些配置和分词器从预训练模型的路径加载UnilmForSeq2Seq模型,并将模型移动到指定的设备上(如果有GPU则使用GPU,否则使用CPU)。

class` `UnilmForSeq2Seq(UnilmPreTrainedModel):``  ``"""UniLM模型进行Seq2Seq的训练模型类"""` `  ``def` `__init__(``self``, config):``    ``"""模型初始化函数,定义模型训练所需的各个模块"""``    ``super``(UnilmForSeq2Seq, ``self``).__init__(config)``    ``self``.bert ``=` `UnilmModel(config)``    ``self``.``cls` `=` `BertOnlyMLMHead(config)``    ``self``.mask_lm ``=` `nn.CrossEntropyLoss(reduction``=``'none'``)``    ``if` `hasattr``(config, ``'label_smoothing'``) ``and` `config.label_smoothing:``      ``self``.mask_lm_smoothed ``=` `LabelSmoothingLoss(config.label_smoothing, config.vocab_size, ignore_index``=``0``,``                            ``reduction``=``'none'``)``    ``else``:``      ``self``.mask_lm_smoothed ``=` `None``    ``self``.init_weights()``    ``self``.tie_weights()` `  ``def` `tie_weights(``self``):``    ``"""权重加载,加载预训练模型的embeddings部分权重"""``    ``self``._tie_or_clone_weights(``self``.``cls``.predictions.decoder,``                  ``self``.bert.embeddings.word_embeddings)` `  ``def` `forward(``self``, input_ids, token_type_ids``=``None``, attention_mask``=``None``, masked_lm_labels``=``None``, masked_pos``=``None``,``        ``masked_weights``=``None``):``    ``"""模型forward,向前传递函数"""``    ``# 获取Encoder部分的序列输出,维度[bs,seq_len,hidden_size]``    ``sequence_output, __ ``=` `self``.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers``=``False``)` `    ``def` `gather_seq_out_by_pos(seq, pos):``      ``return` `torch.gather(seq, ``1``, pos.unsqueeze(``2``).expand(``-``1``, ``-``1``, seq.size(``-``1``)))` `    ``def` `loss_mask_and_normalize(loss, mask):``      ``mask ``=` `mask.type_as(loss)``      ``loss ``=` `loss ``*` `mask``      ``denominator ``=` `torch.``sum``(mask) ``+` `1e``-``5``      ``return` `(loss ``/` `denominator).``sum``()` `    ``if` `masked_lm_labels ``is` `None``:``      ``if` `masked_pos ``is` `None``:``        ``prediction_scores ``=` `self``.``cls``(sequence_output)``      ``else``:``        ``sequence_output_masked ``=` `gather_seq_out_by_pos(sequence_output, masked_pos)``        ``prediction_scores ``=` `self``.``cls``(sequence_output_masked)``      ``return` `prediction_scores``    ``# 获取被掩码位置的向量``    ``sequence_output_masked ``=` `gather_seq_out_by_pos(sequence_output, masked_pos)``    ``prediction_scores_masked ``=` `self``.``cls``(sequence_output_masked)``    ``if` `self``.mask_lm_smoothed:``      ``masked_lm_loss ``=` `self``.mask_lm_smoothed(F.log_softmax(prediction_scores_masked.``float``(), dim``=``-``1``),``                          ``masked_lm_labels)``    ``else``:``      ``masked_lm_loss ``=` `self``.mask_lm(prediction_scores_masked.transpose(``1``, ``2``).``float``(), masked_lm_labels)``    ``# 计算[Mask]标记的损失值``    ``masked_lm_loss ``=` `loss_mask_and_normalize(masked_lm_loss.``float``(), masked_weights)` `    ``return` `masked_lm_loss

我们重点看看这个模型类:

UnilmForSeq2Seq是一个基于UniLM模型的序列到序列模型,主要用于处理序列生成任务,如机器翻译、文本摘要等。下面是UnilmForSeq2Seq模型的主要组成部分及其功能:

  1. self.bert = UnilmModel(config):这是UniLM模型的主体部分,包括BERT的嵌入层、编码器和池化层。这部分用于处理输入序列并生成隐藏状态。

  2. self.cls = BertOnlyMLMHead(config):这是一个预测头,用于预测下一个词。它接收UnilmModel生成的隐藏状态,并输出每个词的预测分数。

  3. self.mask_lm = nn.CrossEntropyLoss(reduction='none'):这是一个交叉熵损失函数,用于计算预测和真实标签之间的损失。

  4. self.mask_lm_smoothed = LabelSmoothingLoss(config.label_smoothing, config.vocab_size, ignore_index=0, reduction='none'):这是一个实现了标签平滑的损失函数,用于训练过程中减少模型对于标签的过拟合。

  5. forward函数:这是模型的前向传播函数,它接收输入序列、注意力掩码和标签,然后通过UnilmModel和预测头计算预测分数,最后使用损失函数计算损失。

总的来说,UnilmForSeq2Seq模型的主要功能是根据输入的序列生成一个新的序列,并通过计算预测和真实标签之间的损失进行训练。


最后如果您也对AI大模型感兴趣想学习却苦于没有方向👀
小编给自己收藏整理好的学习资料分享出来给大家💖

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉如何学习AI大模型?👈

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

四、AI大模型商业化落地方案

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

相关推荐
华院计算18 分钟前
活动|华院计算作为联盟理事单位出席进博会全球人工智能合作论坛
人工智能
原来是猿26 分钟前
类和对象(上)
c语言·开发语言·数据结构·c++·算法
qq_4340859031 分钟前
Day 65 || SPFA、判断负权回路、bellman_ford之单源有限最短路
算法
醇醛酸醚酮酯34 分钟前
二叉树遍历的非递归实现和复杂度分析
数据结构·算法·ducker成长之路
卧式纯绿36 分钟前
自动驾驶3D目标检测综述(二)
人工智能·目标检测·自动驾驶
爱数学的程序猿42 分钟前
联邦学习的未来:深入剖析FedAvg算法与数据不均衡的解决之道
深度学习·学习·机器学习
lllsure1 小时前
二分搜索的三种方法
算法
TMT星球1 小时前
引领豪华MPV新趋势,比亚迪夏内饰科技广州车展全球首发
人工智能·科技
小二·1 小时前
革命性AI搜索引擎!ChatGPT最新功能发布,无广告更智能!
人工智能·搜索引擎·chatgpt
Sunyanhui11 小时前
力扣 最长公共前缀-14
算法·leetcode·职场和发展