最大正方形 Python题解

最大正方形

题目描述

在一个 n × m n\times m n×m 的只包含 0 0 0 和 1 1 1 的矩阵里找出一个不包含 0 0 0 的最大正方形,输出边长。

输入格式

输入文件第一行为两个整数 n , m ( 1 ≤ n , m ≤ 100 ) n,m(1\leq n,m\leq 100) n,m(1≤n,m≤100),接下来 n n n 行,每行 m m m 个数字,用空格隔开, 0 0 0 或 1 1 1。

输出格式

一个整数,最大正方形的边长。

样例 #1

样例输入 #1

4 4
0 1 1 1
1 1 1 0
0 1 1 0
1 1 0 1

样例输出 #1

2

题解

这道题AcWing、洛谷和leetCode都有,只是输入还有输出的些微区别,这里只提供洛谷的Python代码,思路是一样的。

这道题其实不难看出来可以用动态规划做,但是我做这道题的时候是有人要求我先用前缀和做一遍了,所以我这里提供两种思路

1、前缀和

这道题前缀和做法其实很简单,就是看我们想要通过求的正方形的前缀和来求该正方形的面积,如果求出来的面积与正方形边长平方相等,那么这个边长的正方形就满足要求

if 通过前缀和求的面积 == 正方形边长 ** 2:
	return True

怎么通过前缀和求矩形面积呢?我们可以通过下面公式来计算:

设 i 2 , j 2 i_2, j_2 i2,j2 为矩形右下角, i 1 , j 1 = i 2 − l e n S q u a r e + 1 , j 2 − l e n S q u a r e + 1 i_1, j_1 = i_2 - lenSquare + 1, j_2 - lenSquare + 1 i1,j1=i2−lenSquare+1,j2−lenSquare+1 为矩形左上角,那么通过前缀和求矩形面积公式为:
S i z e ( S q u a r e ) = P r e f i x [ i 2 ] [ j 2 ] − P r e f i x [ i 1 − 1 ] [ j 2 ] − P r e f i x [ i 2 ] [ j 1 − 1 ] + P r e f i x [ i 1 − 1 ] [ j 1 − 1 ] Size(Square) =Prefix[i_2][j_2] -Prefix[i_1-1][j_2]-Prefix[i_2][j_1-1] +Prefix[i_1-1][j_1-1] Size(Square)=Prefix[i2][j2]−Prefix[i1−1][j2]−Prefix[i2][j1−1]+Prefix[i1−1][j1−1]

下面这张图为上图的前缀和矩阵:

那么穷举求出每种正方形边长的情况,我们就可以得到可能的正方形边长

欸,别急,直接穷举正方形边长还是慢了,正方形边长是从小到大穷举的,我们可以使用二分来加速对边长的举证:

if mid正方边长满足要求:
	我们去找是否存在更大的边长满足要求:left = mid + 1
else:
	mid长度都不符合要求的,直接去找更小的边长了: right = mid - 1

最后得出Python代码(时间复杂度为 O ( N 2 l o g 2 N ) O(N^2log_2N) O(N2log2N)):

python 复制代码
def judge(lenEdge, Prefix):
    global N, M
    for i in range(lenEdge, N+1):
        for j in range(lenEdge, M+1):
            if Prefix[i][j] - Prefix[i-lenEdge][j] - Prefix[i][j-lenEdge] + Prefix[i-lenEdge][j-lenEdge] == lenEdge**2:
                return True
    else:
        return False


N, M = map(int, input().strip().split())
A = [[0 for _ in range(M+1)]]
for i in range(1, N+1):
    tmp = [0]
    tmp.extend(map(int, input().strip().split()))
    A.append(tmp)
Prefix = [[0 for _ in range(M+1)] for _ in range(N+1)]
for i in range(1, N+1):
    for j in range(1, M+1):
        Prefix[i][j] = Prefix[i-1][j] + Prefix[i][j-1] - Prefix[i-1][j-1] + A[i][j]
left, right = 0, min(N, M)
ans = 0
while left <= right:
    mid = (left + right) // 2
    if judge(mid, Prefix):
        ans = max(ans, mid)
        left = mid + 1
    else:
        right = mid - 1
print(ans)

2、动态规划法

动态规划法的想法更容易想到,这里用图来说明一下:

定义 i , j i,j i,j为正方形的左下角坐标,且 d p [ i ] [ j ] dp[i][j] dp[i][j]存的是该正方形的边长
( 4 , 4 ) (4,4) (4,4)代表的正方形的边长可以从红色、蓝色、绿色,( ( 3 , 3 ) , ( 3 , 4 ) , ( 4 , 3 ) (3,3),(3,4),(4,3) (3,3),(3,4),(4,3))三种颜色的正方形来得出,

可以看出来,黑色框出正方形边长为1+1 = 2,通过多画图推导,得出下面的公式:
d p [ i ] [ j ] = m i n ( d p [ i − 1 ] [ j ] , d p [ i ] [ j − 1 ] , d p [ i − 1 ] [ j − 1 ] ) + 1 dp[i][j] = min(dp[i-1][j],dp[i][j-1],dp[i-1][j-1]) + 1 dp[i][j]=min(dp[i−1][j],dp[i][j−1],dp[i−1][j−1])+1

时间复杂度为 O ( N 2 ) O(N^2) O(N2)

python 复制代码
N, M = map(int, input().strip().split())
A = [[0 for _ in range(M)]] + [[0] + list(map(int, input().strip().split())) for _ in range(N)]
dp = [[0 for _ in range(M+1)] for _ in range(N+1)]
ans = 0
for i in range(1, N+1):
    for j in range(1, M+1):
        if A[i][j] == 1:
            dp[i][j] = min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1]) + 1
            ans = max(ans, dp[i][j])
print(ans)
相关推荐
阿乾之铭4 分钟前
通过Django 与 PostgreSQL 进行WEB开发详细流程
python·postgresql·django
vir027 分钟前
找出目标值在数组中的开始和结束位置(二分查找)
数据结构·c++·算法·leetcode
疯一样的码农12 分钟前
Python 多线程
开发语言·python
chusheng184016 分钟前
Python 爬取大量数据如何并发抓取与性能优化
开发语言·python·性能优化
Bruce小鬼27 分钟前
QT创建按钮篇
开发语言·qt
计算机学姐27 分钟前
基于Python的影院电影购票系统
开发语言·vue.js·后端·python·mysql·pycharm·pip
转世成为计算机大神40 分钟前
易考八股文之谈谈对sentinel的理解和作用?
java·开发语言·sentinel
微刻时光1 小时前
Docker镜像分成
java·运维·开发语言·docker·容器·镜像
尘浮生1 小时前
Java项目实战II基于Spring Boot的问卷调查系统的设计与实现(开发文档+数据库+源码)
java·开发语言·数据库·spring boot·后端·maven·intellij-idea
春天的菠菜1 小时前
【django】Django REST Framework (DRF) 项目中实现 JWT
后端·python·django·jwt