大数据毕业设计选题推荐-食品销售数据分析系统-Hive-Hadoop-Spark

作者主页 :IT研究室✨

个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。

☑文末获取源码☑
精彩专栏推荐 ⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目

文章目录

一、前言

近年来,随着经济的快速发展和人们生活水平的提高,食品行业呈现出蓬勃发展的态势。根据国家统计局数据,2022年中国食品制造业营业收入达到8.7万亿元,同比增长6.8%。与此同时,电子商务的兴起为食品销售开辟了新的渠道。中国互联网络信息中心(CNNIC)发布的第49次《中国互联网络发展状况统计报告》显示,截至2021年12月,中国网上零售市场交易规模达到13.1万亿元,其中食品类商品占比达到18.2%。然而,面对如此庞大的市场和海量的销售数据,食品企业、监管部门和消费者往往难以有效地提取和分析有价值的信息。调查显示,超过65%的食品企业表示缺乏有效的工具来全面分析销售数据和市场趋势。同时,80%的消费者希望能够更直观地了解食品的来源、价格走势和质量评价。与此同时,大数据分析和可视化技术的快速发展为解决这些问题提供了新的思路。据IDC预测,到2025年,全球大数据分析市场规模将达到1031亿美元,年复合增长率为12.8%。在这一背景下,开发一个食品销售数据分析系统,利用先进的数据分析和可视化技术对食品销售数据进行全面分析,具有重要的现实意义。

食品销售数据分析系统的开发和应用将在多个方面发挥重要作用,其意义主要体现在以下几个方面:首先,对食品企业而言,该系统通过数据可视化大屏展示类别统计、产地统计、店铺统计和价格统计等信息,帮助企业更直观地了解市场需求和销售趋势,从而制定更精准的生产和营销策略,提高经营效率和竞争力。其次,对监管部门来说,系统提供的数据分析结果可以帮助他们更有效地监控食品市场动态,及时发现潜在的食品安全风险,制定更有针对性的监管措施。再次,对消费者而言,该系统可以提供透明、直观的食品信息,包括价格趋势、产地分布等,帮助他们做出更明智的购买决策,提高消费体验。此外,从学术研究的角度看,这个系统为食品经济学、消费行为学等领域的研究者提供了宝贵的数据资源和分析工具,有助于推动相关领域的理论创新和实证研究。最后,从产业发展的角度来看,该系统的应用将促进食品行业的数字化转型,推动大数据、人工智能等先进技术在食品行业的深度应用,为行业的可持续发展注入新的动力。总的来说,这个食品销售数据分析系统不仅能为食品产业链的各个参与者创造价值,还能为提高食品安全水平、优化资源配置、促进产业升级做出重要贡献,具有显著的经济和社会价值。

二、开发环境

  • 开发语言:Python
  • 数据库:MySQL
  • 系统架构:B/S
  • 后端:Django
  • 前端:Vue

三、系统界面展示

  • 食品销售数据分析系统界面展示:


四、代码参考

  • 项目实战代码参考:
java(贴上部分代码) 复制代码
class FoodSalesSpider(scrapy.Spider):
    name = 'food_sales'
    allowed_domains = ['example.com']
    start_urls = ['https://example.com/food-sales']

    def parse(self, response):
        for product in response.css('div.product-item'):
            item = FoodSalesItem()
            item['name'] = product.css('h2.product-name::text').get()
            item['category'] = product.css('span.category::text').get()
            item['origin'] = product.css('span.origin::text').get()
            item['price'] = float(product.css('span.price::text').get().replace('$', ''))
            item['store'] = product.css('span.store::text').get()
            item['sales_volume'] = int(product.css('span.sales::text').get().replace('销量:', ''))
            yield item

        next_page = response.css('a.next-page::attr(href)').get()
        if next_page:
            yield response.follow(next_page, self.parse)
java(贴上部分代码) 复制代码
class FoodSales(models.Model):
    name = models.CharField(max_length=200)
    category = models.CharField(max_length=100)
    origin = models.CharField(max_length=100)
    price = models.DecimalField(max_digits=10, decimal_places=2)
    store = models.CharField(max_length=200)
    sales_volume = models.IntegerField()
    date_added = models.DateTimeField(auto_now_add=True)

    def __str__(self):
        return self.name

# views.py
from django.shortcuts import render
from django.db.models import Count, Avg, Sum
from django.http import JsonResponse
from .models import FoodSales

def data_visualization(request):
    # 类别统计
    category_stats = FoodSales.objects.values('category').annotate(count=Count('id'), total_sales=Sum('sales_volume'))

    # 产地统计
    origin_stats = FoodSales.objects.values('origin').annotate(count=Count('id'), total_sales=Sum('sales_volume'))

    # 店铺统计
    store_stats = FoodSales.objects.values('store').annotate(count=Count('id'), total_sales=Sum('sales_volume'))

    # 价格统计
    price_stats = FoodSales.objects.aggregate(
        avg_price=Avg('price'),
        max_price=Max('price'),
        min_price=Min('price')
    )

    data = {
        'category_stats': list(category_stats),
        'origin_stats': list(origin_stats),
        'store_stats': list(store_stats),
        'price_stats': price_stats
    }

    return JsonResponse(data)

五、论文参考

  • 计算机毕业设计选题推荐-食品销售数据分析系统论文参考:

六、系统视频

食品销售数据分析系统项目视频:

大数据毕业设计选题推荐-食品销售数据分析系统-Hive-Hadoop-Spark

结语

大数据毕业设计选题推荐-食品销售数据分析系统-Hive-Hadoop-Spark

大家可以帮忙点赞、收藏、关注、评论啦~
源码获取:⬇⬇⬇

精彩专栏推荐 ⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目

相关推荐
TDengine (老段)9 分钟前
TDengine 数学函数 DEGRESS 用户手册
大数据·数据库·sql·物联网·时序数据库·iot·tdengine
TDengine (老段)12 分钟前
TDengine 数学函数 GREATEST 用户手册
大数据·数据库·物联网·时序数据库·iot·tdengine·涛思数据
清风6666661 小时前
基于单片机的噪声波形检测与分贝测量仪设计
单片机·嵌入式硬件·毕业设计·课程设计
爱喝白开水a1 小时前
LangChain 基础系列之 Prompt 工程详解:从设计原理到实战模板_langchain prompt
开发语言·数据库·人工智能·python·langchain·prompt·知识图谱
字节数据平台1 小时前
火山引擎Data Agent再拓新场景,重磅推出用户研究Agent
大数据·人工智能·火山引擎
starfalling10242 小时前
【hive】一种高效增量表的实现
hive
默默coding的程序猿3 小时前
3.git的分支携带问题是什么?怎么解决?
java·git·python·svn·gitee·github·intellij-idea
顧棟4 小时前
【Yarn实战】Yarn 2.9.1滚动升级到3.4.1调研与实践验证
hadoop·yarn
铭毅天下4 小时前
Elasticsearch 到 Easysearch 数据迁移 5 种方案选型实战总结
大数据·elasticsearch·搜索引擎·全文检索
跨境小新4 小时前
Facebook广告投放:地域定向流量不精准?x个优化指南
大数据·facebook