通讯方面的数据,人工智能 机器学习的时候,因为数字都接近于一,数据归一化的一种方法,做了一个简化版本的Z-score标准化

这个表达式实现了一种形式的数据归一化,它将张量`x`中的每个元素除以`x`的标准差的估计值。这种处理方式可以使得变换后的数据具有单位标准差(假设数据已经是零均值或者在计算过程中考虑了均值)。具体来说,它是基于以下步骤进行的:

tensorflow的写法

复制代码
tf.divide(x, tf.sqrt(2 * tf.reduce_mean(tf.square(x))))

例如

复制代码
norm_layer = keras.layers.Lambda(lambda x: tf.divide(x, tf.sqrt(2 * tf.reduce_mean(tf.square(x)))))
  1. 计算`x`中所有元素的平方。

  2. 求这些平方值的平均数,得到方差的估计值。

  3. 将上述平均数乘以2,这一步骤看起来是为了调整方差的大小,可能是因为某种特定的统计原因或是在特定上下文中对数据分布有特殊要求。

  4. 对2倍的方差取平方根,得到一个与标准差相关的值。

  5. 最后,用原始张量`x`除以这个值,从而实现标准化。

从统计学的角度来看,这样的操作类似于Z-score标准化的一个变体,其中Z-score标准化通常定义为 (x - μ) / σ,这里μ是均值,σ是标准差。但是,在给定的操作中,并没有显式地减去均值,而是直接除以了一个与标准差成比例的值。如果`x`本身已经近似于零均值,那么这个过程可以看作是对`x`做了一个简化版本的Z-score标准化。

这种类型的归一化常用于机器学习和深度学习中,尤其是当需要确保输入特征或层激活具有相似尺度时。例如,在某些情况下,这种处理可以帮助改善模型训练的稳定性和效率。不过,要注意的是,这种特定的形式并不常见,可能是针对某个特定问题或模型设计的定制化处理方法。如果你正在处理的具体问题或模型有特别的要求,这种自定义的归一化方法可能会被采用。

相关推荐
听风吹等浪起3 分钟前
分类算法-逻辑回归
人工智能·算法·机器学习
许泽宇的技术分享17 分钟前
让AI说“人话“:TypeChat.NET如何用强类型驯服大语言模型的“野性“
人工智能
IT_陈寒31 分钟前
Python性能优化:用这5个鲜为人知的内置函数让你的代码提速50%
前端·人工智能·后端
亚马逊云开发者35 分钟前
使用大模型技术构建机票分销领域人工智能客服助手
人工智能
机器学习之心43 分钟前
一个基于自适应图卷积神经微分方程(AGCNDE)的时空序列预测Matlab实现。这个模型结合了图卷积网络和神经微分方程,能够有效捕捉时空数据的动态演化规律
人工智能·深度学习·matlab·时空序列预测
视觉语言导航1 小时前
ICRA-2025 | 机器人具身探索导航新策略!CTSAC:基于课程学习Transformer SAC算法的目标导向机器人探索
人工智能·机器人·具身智能
秋雨qy1 小时前
仿真软件-多机器人2
人工智能·机器人
zskj_qcxjqr1 小时前
七彩喜理疗艾灸机器人:传统中医与现代科技的融合创新
大数据·人工智能·科技·机器人
AI人工智能+1 小时前
文档抽取技术作为AI和自然语言处理的核心应用,正成为企业数字化转型的关键工具
人工智能·nlp·ocr·文档抽取
成都犀牛1 小时前
强化学习(5)多智能体强化学习
人工智能·机器学习·强化学习