Stable Diffusion绘画 | 来训练属于自己的模型:炼丹参数调整--步数设置与计算

要想训练一个优质的模型,一定要认识和了解模型训练中,参数的作用和意义。

整个模型训练的过程,参数并不是一成不变的,也没有固定的模板,

当我们修改了模型训练里面的某个参数,很可能就需要连带其他一系列参数的配合调整,同时也需要根据训练时的数值反馈来做出合理的修改及调整。

选择「自定义参数」以及基础模型,点击「确定」:

进入到详细的调参页面:

炼丹实操--步数设置

Repeat值

指的是,训练的次数,例如设置为 50,代表每张图片都要重复训练10次。

如果图片细节多,或者发现训练的模型与上传的素材不像,则需要提高 Repeat值。

但 Repeat值 不能盲目增加,随着 Repeat值 增加,训练时长也会相应增加,

并且会让AI对图片学习过度,没有自己的想法💡,容易出现过度拟合的情况。

Repeat值 推荐:

  • 二次元:7-15
  • 人物:30-50
  • 实物风景:100
Epoch值

指的是,整个模型重复训练的轮数,每一轮都会生成一个模型。

Epoch值 推荐:10-20左右

炼丹实操--效率设置

Batch size

指的是,并行训练次数。

数值调整,跟显存配置有关,目前设置为 2,代表同一时刻,有2条并行任务在执行训练。

因此,数值越大,训练速度越快。

总步数 = 素材图片数量 * Repeat值 * Epoch值 / Batch size = 25 * 30 * 10 / 2 = 3750

因此,这一次的模型训练总步数为 3750。

以上就是关于模型训练步数的计算方法。

今天先分享到这里~


开启实践: SD绘画 | 为你所做的学习过滤

相关推荐
Elastic 中国社区官方博客4 小时前
使用 Discord 和 Elastic Agent Builder A2A 构建游戏社区支持机器人
人工智能·elasticsearch·游戏·搜索引擎·ai·机器人·全文检索
2501_933329555 小时前
企业级AI舆情中台架构实践:Infoseek系统如何实现亿级数据实时监测与智能处置?
人工智能·架构
阿杰学AI5 小时前
AI核心知识70——大语言模型之Context Engineering(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·数据处理·上下文工程
赛博鲁迅5 小时前
物理AI元年:AI走出屏幕进入现实,88API为机器人装上“最强大脑“
人工智能·机器人
管牛牛5 小时前
图像的卷积操作
人工智能·深度学习·计算机视觉
云卓SKYDROID6 小时前
无人机航线辅助模块技术解析
人工智能·无人机·高科技·云卓科技
琅琊榜首20206 小时前
AI生成脑洞付费短篇小说:从灵感触发到内容落地
大数据·人工智能
imbackneverdie7 小时前
近年来,我一直在用的科研工具
人工智能·自然语言处理·aigc·论文·ai写作·学术·ai工具
roman_日积跬步-终至千里7 小时前
【计算机视觉-作业1】从图像到向量:kNN数据预处理完整流程
人工智能·计算机视觉