Pytorch库中torch.normal()详解

torch.normal()用法

torch.normal()函数,用于生成符合正态分布(高斯分布)的随机数。在 PyTorch 中,这个函数通常用于生成 Tensor。

该函数共有四个方法:

python 复制代码
@overload
def normal(mean: Tensor, std: Tensor, *, generator: Optional[Generator] = None, out: Optional[Tensor] = None) -> Tensor: ...
@overload
def normal(mean: Tensor, std: _float = 1, *, generator: Optional[Generator] = None, out: Optional[Tensor] = None) -> Tensor: ...
@overload
def normal(mean: _float, std: Tensor, *, generator: Optional[Generator] = None, out: Optional[Tensor] = None) -> Tensor: ...
@overload
def normal(mean: _float, std: _float, size: Sequence[Union[_int, SymInt]], *, 
           generator: Optional[Generator] = None, out: Optional[Tensor] = None, 
           dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, 
           device: Optional[Optional[DeviceLikeType]] = None, 
           pin_memory: Optional[_bool] = False, 
           requires_grad: Optional[_bool] = False) -> Tensor: ...
参数解析
  • mean: 表示正态分布的均值 (μ)。可以是一个标量,也可以是一个张量,如果是张量,其形状必须与 std 相容。如果 mean 是一个张量,那么函数将生成与 mean 相同形状的随机数张量,并以 mean 中的值作为各个维度的均值。
  • std: 表示正态分布的标准差 (σ)。可以是一个标量,也可以是一个张量,如果是张量,其形状必须与 mean 相容。如果 std 是一个张量,那么函数将生成与 std 相同形状的随机数张量,并以 std 中的值作为各个维度的标准差。
  • "*" (星号):星号后的参数为关键字参数,只能用关键字指定。
  • size:指定生成张量的尺寸。
  • generator=None:指定一个随机数生成器。PyTorch 常用 torch.Generator() 创建生成器。如果不指定,使用默认生成器。
  • out=None:用于指定输出的 Tensor。如果不提供,函数将返回一个新创建的 Tensor。
返回值

返回一个张量,其形状与 mean 和 std 相同,其中的元素服从均值为 mean,标准差为 std 的正态分布。

使用示例

python 复制代码
import torch

random_value = torch.normal(mean=0.0, std=1.0, size=(2, 2))
print(random_value)

# 生成一个服从均值0和标准差1的单个随机数
random_value = torch.normal(mean=0, std=1, size=(1,))
print(random_value)

# 生成一个服从均值0和标准差1的张量
mean_tensor = torch.zeros(3, 3)  # 均值张量
std_tensor = torch.ones(3, 3)  # 标准差张量
random_tensor = torch.normal(mean_tensor, std_tensor)
print(random_tensor)

# 使用指定生成器生成随机数
generator = torch.Generator().manual_seed(42)
random_value_with_generator = torch.normal(mean=0.0, std=1.0, size=(2, 2), generator=generator)
print(random_value_with_generator)

# 输出到指定Tensor
out_tensor = torch.empty(3, 3)
torch.normal(mean_tensor, std_tensor, out=out_tensor)
print(out_tensor)

以上是 torch.normal() 函数的基本用法。可以根据具体需求调整 mean 和 std 的值来生成不同形状、不同均值和标准差的正态分布随机数。

相关推荐
Jing_Rainbow26 分钟前
【AI-7 全栈-2 /Lesson16(2025-11-01)】构建一个基于 AIGC 的 Logo 生成 Bot:从前端到后端的完整技术指南 🎨
前端·人工智能·后端
syounger27 分钟前
奔驰全球 IT 加速转型:SAP × AWS × Agentic AI 如何重塑企业核心系统
人工智能·云计算·aws
16_one41 分钟前
autoDL安装Open-WebUi+Rag本地知识库问答+Function Calling
人工智能·后端·算法
智能交通技术44 分钟前
iTSTech:自动驾驶技术综述报告 2025
人工智能·机器学习·自动驾驶
清云逸仙1 小时前
AI Prompt 工程最佳实践:打造结构化的Prompt
人工智能·经验分享·深度学习·ai·ai编程
todoitbo1 小时前
基于Rokid CXR-M SDK实现AR智能助手应用:让AI大模型走进AR眼镜
人工智能·ai·ar·ar眼镜·rokid
hacker7072 小时前
openGauss 在K12教育场景的数据处理测评:CASE WHEN 实现高效分类
人工智能·分类·数据挖掘
暖光资讯2 小时前
前行者获2025抖音最具影响力品牌奖,亮相上海ZFX装备前线展,引领外设行业“文化科技”新浪潮
人工智能·科技
guslegend2 小时前
第3章:SpringAI进阶之会话记忆实战
人工智能
陈橘又青2 小时前
100% AI 写的开源项目三周多已获得 800 star 了
人工智能·后端·ai·restful·数据