Pytorch库中torch.normal()详解

torch.normal()用法

torch.normal()函数,用于生成符合正态分布(高斯分布)的随机数。在 PyTorch 中,这个函数通常用于生成 Tensor。

该函数共有四个方法:

python 复制代码
@overload
def normal(mean: Tensor, std: Tensor, *, generator: Optional[Generator] = None, out: Optional[Tensor] = None) -> Tensor: ...
@overload
def normal(mean: Tensor, std: _float = 1, *, generator: Optional[Generator] = None, out: Optional[Tensor] = None) -> Tensor: ...
@overload
def normal(mean: _float, std: Tensor, *, generator: Optional[Generator] = None, out: Optional[Tensor] = None) -> Tensor: ...
@overload
def normal(mean: _float, std: _float, size: Sequence[Union[_int, SymInt]], *, 
           generator: Optional[Generator] = None, out: Optional[Tensor] = None, 
           dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, 
           device: Optional[Optional[DeviceLikeType]] = None, 
           pin_memory: Optional[_bool] = False, 
           requires_grad: Optional[_bool] = False) -> Tensor: ...
参数解析
  • mean: 表示正态分布的均值 (μ)。可以是一个标量,也可以是一个张量,如果是张量,其形状必须与 std 相容。如果 mean 是一个张量,那么函数将生成与 mean 相同形状的随机数张量,并以 mean 中的值作为各个维度的均值。
  • std: 表示正态分布的标准差 (σ)。可以是一个标量,也可以是一个张量,如果是张量,其形状必须与 mean 相容。如果 std 是一个张量,那么函数将生成与 std 相同形状的随机数张量,并以 std 中的值作为各个维度的标准差。
  • "*" (星号):星号后的参数为关键字参数,只能用关键字指定。
  • size:指定生成张量的尺寸。
  • generator=None:指定一个随机数生成器。PyTorch 常用 torch.Generator() 创建生成器。如果不指定,使用默认生成器。
  • out=None:用于指定输出的 Tensor。如果不提供,函数将返回一个新创建的 Tensor。
返回值

返回一个张量,其形状与 mean 和 std 相同,其中的元素服从均值为 mean,标准差为 std 的正态分布。

使用示例

python 复制代码
import torch

random_value = torch.normal(mean=0.0, std=1.0, size=(2, 2))
print(random_value)

# 生成一个服从均值0和标准差1的单个随机数
random_value = torch.normal(mean=0, std=1, size=(1,))
print(random_value)

# 生成一个服从均值0和标准差1的张量
mean_tensor = torch.zeros(3, 3)  # 均值张量
std_tensor = torch.ones(3, 3)  # 标准差张量
random_tensor = torch.normal(mean_tensor, std_tensor)
print(random_tensor)

# 使用指定生成器生成随机数
generator = torch.Generator().manual_seed(42)
random_value_with_generator = torch.normal(mean=0.0, std=1.0, size=(2, 2), generator=generator)
print(random_value_with_generator)

# 输出到指定Tensor
out_tensor = torch.empty(3, 3)
torch.normal(mean_tensor, std_tensor, out=out_tensor)
print(out_tensor)

以上是 torch.normal() 函数的基本用法。可以根据具体需求调整 mean 和 std 的值来生成不同形状、不同均值和标准差的正态分布随机数。

相关推荐
CV学术叫叫兽12 分钟前
快速图像识别:落叶植物叶片分类
人工智能·分类·数据挖掘
WeeJot嵌入式38 分钟前
卷积神经网络:深度学习中的图像识别利器
人工智能
糖豆豆今天也要努力鸭1 小时前
torch.__version__的torch版本和conda list的torch版本不一致
linux·pytorch·python·深度学习·conda·torch
脆皮泡泡1 小时前
Ultiverse 和web3新玩法?AI和GameFi的结合是怎样
人工智能·web3
机器人虎哥1 小时前
【8210A-TX2】Ubuntu18.04 + ROS_ Melodic + TM-16多线激光 雷达评测
人工智能·机器学习
码银1 小时前
冲破AI 浪潮冲击下的 迷茫与焦虑
人工智能
用户37791362947551 小时前
【循环神经网络】只会Python,也能让AI写出周杰伦风格的歌词
人工智能·算法
何大春1 小时前
【弱监督语义分割】Self-supervised Image-specific Prototype Exploration for WSSS 论文阅读
论文阅读·人工智能·python·深度学习·论文笔记·原型模式
uncle_ll1 小时前
PyTorch图像预处理:计算均值和方差以实现标准化
图像处理·人工智能·pytorch·均值算法·标准化
宋138102797201 小时前
Manus Xsens Metagloves虚拟现实手套
人工智能·机器人·vr·动作捕捉