Python数据分析篇--NumPy--进阶

人有一种天生的、难以遏制的欲望,那就是在理解之前就评判。 -- 米兰·昆德拉

多维数组

  1. 一维数组只有行,二维数组相比一维数组多了列这个维度,而三维数组则类似多个二维数组堆叠在一起,形如一个立方体。

二维数组的创建

  1. 二维数组相当于单层的嵌套列表。并且我们可以将单层嵌套列表传入 np.array() 方法创建一个二维数组。

  2. ones() 和 zeros() 方法同样也能快速创建元素全为 1 和 0 的二维数组。与之前的区别在于,创建二维数组要传入一个包含行和列信息的元组。

  3. 更多维的数组的创建,只要传入嵌套层数更多的列表即可。

python 复制代码
import numpy as np

list_1=[[1, 2], [3, 4]]
print(list_1)
# [[1, 2], [3, 4]]

list_2=np.array([[1, 2], [3, 4]])
print(list_2)
# [[1 2]
#  [3 4]]
python 复制代码
import numpy as np
list_1=np.ones((3,4)) # 3行4列
print(list_1)

#[[1. 1. 1. 1.]
# [1. 1. 1. 1.]
# [1. 1. 1. 1.]]

多维数组的性质

  1. ndim:多维数组的维度个数。例如:二维数组的 ndim 为 2;

  2. shape:多维数组的形状。对于 m 行和 n 列的数组,它的 shape 将是 (m,n)。因此,shape 元组的长度(元素个数)就是 ndim 的值;

  3. size:多维数组中所有元素的个数。shape 元组中每个元素的乘积就是 size 的值;

  4. dtype:多维数组中元素的类型。

python 复制代码
data = np.array([[1, 2, 3], [4, 5, 6]])

print('ndim:', data.ndim)
print('shape:', data.shape)
print('size:', data.size)
print('dtype:', data.dtype)

# ndim: 2
# shape: (2, 3)
# size: 6
# dtype: int64

二维数组的加减乘除

  1. 二维数组间的加减乘除和一维数组间的并无大致,也是对应位置的元素进行计算。

  2. 维度一样的数组间可以进行计算的条件是形状(shape)一样,形状不一样的数组元素无法一一对应,因此无法计算,导致报错。

  3. 广播原则:先补齐行轴,再往列轴方向进行复制。

二维数组的通用方法

  1. 二维数组的通用方法和一维数组的通用方法的基本用法类似,只是多了一个维度的数据。

  2. 二维数组不仅可以对所有数据进行计算,还可以针对某个维度上的数据进行计算。

  3. 这里就要引入一个概念------轴(axis)。轴和维度的概念是类似的,一维数组有 1 个轴,二维数组有 2 个轴,三维数组有 3 个轴等等。

python 复制代码
import numpy as np
data = np.array([[1, 2], [5, 3], [4, 6]])

# 不指定 axis
print(data.max())
# 输出:6

# axis=0
print(data.max(axis=0))
# 输出:[5 6]

# axis=1
print(data.max(axis=1))
# 输出:[2 5 6]

二维数组的索引和分片

  1. 二维数组的索引和分片同样和一维数组类似,只是在行索引的基础上再加上列索引。

  2. 形如 data[m,n],其中 data 是二维数组,m 是行索引或分片,n 是列索引或分片。

  3. 如果省略第二个参数 n 的话表示获取所有列,data[0] 就表示获取整个第一行,相当于 data[0, :]。

python 复制代码
data = np.array([[1, 2], [3, 4], [5, 6]])

print(data[0, 1])
# 2

print(data[:, 0])
# [1 3 5]

print(data[1:3])
# [[3 4]
#  [5 6]]

布尔索引

  1. 布尔索引,顾名思义就是用布尔值作为索引去获取需要的元素。

  2. and 改用 &,or 改用 |,not 改用 ~,并且每个条件要用括号括起来。

python 复制代码
data = np.array([[1, 2], [3, 4], [5, 6]])
print(data[data > 3])
# 输出:[4 5 6]

# 大于 3 或者不小于 2(即大于等于 2)
print(data[(data > 3) | ~(data < 2)])
# 输出:[2 3 4 5 6]

实用方法

arange() 方法

  1. numpy 中的 arange() 方法和 Python 中的 rang() 用法类似,不同之处在于 arange() 方法生成的是数组,而 rang() 方法生成的是 rang 类型的序列。
python 复制代码
# 生成 1-9 的数组
print(np.arange(1, 10))
# 输出:[1 2 3 4 5 6 7 8 9]

# 生成 0-9 的数组
print(np.arange(10))
# 输出:[0 1 2 3 4 5 6 7 8 9]

# 生成 1-9 的数组,步长为 2
print(np.arange(1, 10, 2))
# 输出:[1 3 5 7 9]

随机方法

  1. Python 中有 random 模块来生成随机数,numpy 针对多维数组也集成了 random 模块,并且更加方便好用。

  2. 这里只介绍其中的 rand() 方法和 randint() 方法,更多方法大家可以在需要时查询使用。

  3. numpy 中的 np.random.rand() 方法和 Python 中 random.rand() 方法类似,都是生成 [0,1) 之间的随机小数。

  4. 不同的是,numpy 中的 np.random.rand() 方法可以生成多个 [0,1) 之间的随机小数,只需我们传入要生成的随机数组的形状(shape)即可。

  5. 同理,numpy 中的 np.random.randint() 方法和 Python 中的 random.randint() 类似.

  6. 不同之处在于,random.randint() 生成的是 [m,n] 之间的整数,而 np.random.randint() 生成的是 [m,n) 之间的整数。

python 复制代码
# 不传参数时
print(np.random.rand())
# 输出:0.1392571183916036

# 传入一个参数时
print(np.random.rand(3))
# 输出:[0.7987698  0.52115291 0.70452156]

# 传入多个参数时
print(np.random.rand(2, 3))
# 输出:
# [[0.08539006 0.97878203 0.23976172]
#  [0.34301963 0.48388704 0.63304024]]
python 复制代码
# 不传入形状时
print(np.random.randint(0, 5))
# 输出:3

# 形状为一维数组时
print(np.random.randint(0, 5, 3))
# 输出:[4 0 1]

# 形状为二维数组时
print(np.random.randint(0, 5, (2, 3)))
# 输出:
# [[0 2 1]
#  [4 2 0]]

genfromtxt() 方法

  1. genfromtxt() 方法用于文件的读取。

  2. genfromtxt() 方法常用的参数有两个,分别是数据源和分隔符。

  3. 第一个参数是数据源,可以是本地文件的路径,也可以是网络文件的地址。

  4. 第二个delimiter 参数用于指定分隔符,CSV 文件一般是用逗号作为分隔符,当遇到其他符号分隔的文件时,用 delimiter 参数进行指定即可。

  5. genfromtxt() 方法的返回值是一个多维数组。

python 复制代码
import numpy as np
data=np.genfromtxt('data.csv',delimiter=',')
print(data)

致谢

感谢您花时间阅读这篇文章!如果您对本文有任何疑问、建议或是想要分享您的看法,请不要犹豫,在评论区留下您的宝贵意见。每一次互动都是我前进的动力,您的支持是我最大的鼓励。期待与您的交流,让我们共同成长,探索技术世界的无限可能!

相关推荐
懒大王爱吃狼6 分钟前
Python绘制数据地图-MovingPandas
开发语言·python·信息可视化·python基础·python学习
数据小小爬虫10 分钟前
如何使用Python爬虫按关键字搜索AliExpress商品:代码示例与实践指南
开发语言·爬虫·python
martian66532 分钟前
第17篇:python进阶:详解数据分析与处理
开发语言·python
无码不欢的我36 分钟前
使用vscode在本地和远程服务器端运行和调试Python程序的方法总结
ide·vscode·python
五味香37 分钟前
Java学习,查找List最大最小值
android·java·开发语言·python·学习·golang·kotlin
金融OG43 分钟前
99.8 金融难点通俗解释:净资产收益率(ROE)
大数据·python·线性代数·机器学习·数学建模·金融·矩阵
fmdpenny1 小时前
Django的安装
后端·python·django
小爬菜1 小时前
Django学习笔记(启动项目)-03
前端·笔记·python·学习·django
希艾席蒂恩1 小时前
专业数据分析不止于Tableau,四款小众报表工具解析
大数据·信息可视化·数据分析·数据可视化·报表工具