构建llama.cpp并在linux上使用gpu

使用gpu构建llama.cpp

更多详情参见https://github.com/abetlen/llama-cpp-python,官网网站会随着版本迭代更新。

下载并进入llama.cpp

地址:https://github.com/ggerganov/llama.cpp

可以下载到本地再传到服务器上

bash 复制代码
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp

编译源码(make)

生成./main和./quantize等二进制文件。详见:https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md

使用CPU
bash 复制代码
make
使用GPU
bash 复制代码
make GGML_CUDA=1
可能出现的报错及解决方法

I ccache not found. Consider installing it for faster compilation.

bash 复制代码
sudo apt-get install ccache

Makefile:1002: *** I ERROR: For CUDA versions < 11.7 a target CUDA architecture must be explicitly provided via environment variable CUDA_DOCKER_ARCH, e.g. by running "export CUDA_DOCKER_ARCH=compute_XX" on Unix-like systems, where XX is the minimum compute capability that the code needs to run on. A list with compute capabilities can be found here: https://developer.nvidia.com/cuda-gpus . Stop.

说明cuda版本太低,如果不是自己下载好的,参考该文章nvcc -V 显示的cuda版本和实际版本不一致更换
NOTICE: The 'server' binary is deprecated. Please use 'llama-server' instead.

提示:随版本迭代,命令可能会失效

正确结果

内容很长,只截取了一部分

调用大模型

安装llama.cpp,比较慢

bash 复制代码
CMAKE_ARGS="-DGGML_CUDA=on" pip install llama-cpp-python

调用

python 复制代码
from langchain_community.chat_models import ChatLlamaCpp
from langchain_community.llms import LlamaCpp

local_model = "/data/pretrained/gguf/Meta-Llama-3-8B-Instruct-Q5_K_M.gguf"
llm = ChatLlamaCpp(
    seed=1,
    temperature=0.5,
    model_path=local_model,
    n_ctx=8192,
    n_gpu_layers=64,
    n_batch=12,  # Should be between 1 and n_ctx, consider the amount of VRAM in your GPU.
    max_tokens=8192,
    repeat_penalty=1.5,
    top_p=0.5,
    f16_kv=False,
    verbose=True,
)
messages = [
    (
        "system",
        "You are a helpful assistant that translates English to Chinese. Translate the user sentence.",
    ),
    ("human",
     "OpenAI has a tool calling API that lets you describe tools and their arguments, and have the model return a JSON object with a tool to invoke and the inputs to that tool. tool-calling is extremely useful for building tool-using chains and agents, and for getting structured outputs from models more generally."),
]

ai_msg = llm.invoke(messages)
print(ai_msg.content)

正确打印中存在如下内容,说明找到gpu

复制代码
ggml_cuda_init: found 2 CUDA devices:
  Device 0: 你的gpu型号, compute capability gpu计算能力, VMM: yes
  Device 1: 你的gpu型号, compute capability gpu计算能力, VMM: yes
llm_load_tensors: offloading 32 repeating layers to GPU
llm_load_tensors:        CPU buffer size =   344.44 MiB
llm_load_tensors:      CUDA0 buffer size =  2932.34 MiB
llm_load_tensors:      CUDA1 buffer size =  2183.15 MiB
相关推荐
xhxxx16 小时前
你的 AI 为什么总答非所问?缺的不是智商,是“记忆系统”
前端·langchain·llm
智泊AI16 小时前
一文看懂AI大模型的核心模块:基于强化学习的偏好对齐原理及其应用
llm
CoderJia程序员甲17 小时前
GitHub 热榜项目 - 日榜(2025-12-24)
ai·开源·llm·github
亚里随笔18 小时前
突破性框架TRAPO:统一监督微调与强化学习的新范式,显著提升大语言模型推理能力
人工智能·深度学习·机器学习·语言模型·llm·rlhf
www_stdio20 小时前
让大语言模型拥有“记忆”:多轮对话与 LangChain 实践指南
前端·langchain·llm
重铸码农荣光20 小时前
别再让大模型“胡说八道”了!LangChain 的 JsonOutputParser 教你驯服 AI 输出
langchain·llm·aigc
程序员柒叔21 小时前
Langfuse 项目概览
大模型·llm·prompt·可观测性·llm评估
栀秋66621 小时前
LangChain Memory 实战指南:让大模型记住你每一句话,轻松打造“有记忆”的AI助手
javascript·langchain·llm
DigitalOcean1 天前
想在云上低成本部署高性能Agent?MiniMax-M2 + DigitalOcean实战指南
llm·agent·ai编程
树獭非懒1 天前
AI大模型小白手册 | API调用的魔法指南
人工智能·llm·aigc