论文 | Model-tuning Via Prompts Makes NLP Models Adversarially Robust

这篇论文研究了使用提示 (Prompting) 方法微调预训练语言模型,以提高其在对抗样本攻击下的鲁棒性。论文的主要贡献如下:

1.MVP 比 MLP-FT 更鲁棒:

论文比较了 MVP (Model-tuning Via Prompts) 和传统的 MLP-FT (Fine-tuning with an MLP head) 方法,发现 MVP 在对抗样本攻击下表现更鲁棒,平均提升 8% 的准确率,甚至在某些情况下超过了基于对抗训练的 SOTA 防御方法。

论文还发现,将 MVP 与单步对抗训练结合,可以进一步提升鲁棒性,而不会影响无对抗样本时的准确率。

2.MVP 更样本高效,有效鲁棒性更高:

论文通过实验证明了 MVP 在低数据环境下比 MLP-FT 更样本高效,即使用更少的训练样本就能达到相同的准确率。

论文还定义了有效鲁棒性指标,用于衡量具有相同无对抗样本准确率的模型的鲁棒性。结果表明,MVP 的有效鲁棒性也比 MLP-FT 更高。

3. MVP 鲁棒性提升的原因:

论文提出了三个假设来解释 MVP 鲁棒性提升的原因:

随机参数脆弱性: MLP-FT 使用随机初始化的线性层,容易导致特征扭曲,从而降低鲁棒性。实验结果表明,减少随机参数数量可以提升模型鲁棒性。

预训练任务对齐: MVP 使用掩码填空任务,与预训练目标更一致,有助于提升鲁棒性。实验结果表明,没有预训练的模型,MVP 和 MLP-FT 的鲁棒性表现相似,说明预训练任务对齐是关键因素。

候选答案语义: 论文发现,即使使用随机候选答案,MVP 的鲁棒性依然很高,说明候选答案的语义与类别标签是否相关并不影响鲁棒性。

4. 人机实验验证对抗样本的有效性:

论文通过人机实验发现,人类标注者更容易识别对抗样本,并且对抗样本的准确率和置信度都低于无对抗样本,说明 MVP 的鲁棒性提升是有效的。
5. MVP 在 OOD 任务上的鲁棒性提升:

论文还发现,MVP 在 OOD (Out-of-Distribution) 任务上的鲁棒性也比 MLP-FT 更高,平均提升 2% 的准确率。
总结:

这篇论文为 NLP 模型的鲁棒性提升提供了一种新的思路,即使用提示方法进行微调。MVP 方法简单易行,无需对抗训练或提示工程,就能有效提升模型在对抗样本攻击下的鲁棒性。未来研究可以探索将 MVP 应用于更大规模的模型,以及更多类型的 NLP 任务。

相关推荐
ins_lizhiming2 分钟前
华为昇腾910B服务器上部署Qwen3-30B-A3B并使用EvalScope推理性能测试
人工智能·华为
IT考试认证4 分钟前
华为AI认证 H13-321 HCIP-AI V2.0题库
人工智能·华为·题库·hcip-ai·h13-321
热爱生活的五柒11 分钟前
多模态遥感目标检测模型SM3Det:一站式多模态遥感目标检测!开启遥感检测新任务
人工智能·目标检测·计算机视觉·遥感·sm3det
ElfBoard1 小时前
ElfBoard技术贴|如何在【RK3588】ELF 2开发板上进行UART引脚复用配置
人工智能·单片机·嵌入式硬件·物联网
paperxie_xiexuo1 小时前
七款 AI PPT 工具新解:智能驱动演示升级,解锁多元创作场景
大数据·人工智能·powerpoint·大学生·ppt
大模型实验室Lab4AI1 小时前
VideoLLaMA 3新一代前沿多模态基础模型赋能图像与视频深度理解| LLM | 计算机视觉
人工智能·计算机视觉·音视频
还不秃顶的计科生2 小时前
如何快速用cmd知道某个文件夹下的子文件以及子文件夹的这个目录分支具体的分支结构
人工智能
九河云2 小时前
不同级别华为云代理商的增值服务内容与质量差异分析
大数据·服务器·人工智能·科技·华为云
Elastic 中国社区官方博客2 小时前
Elasticsearch:Microsoft Azure AI Foundry Agent Service 中用于提供可靠信息和编排的上下文引擎
大数据·人工智能·elasticsearch·microsoft·搜索引擎·全文检索·azure
大模型真好玩2 小时前
Gemini3.0深度解析,它在重新定义智能,会是前端工程师噩梦吗?
人工智能·agent·deepseek