论文 | Model-tuning Via Prompts Makes NLP Models Adversarially Robust

这篇论文研究了使用提示 (Prompting) 方法微调预训练语言模型,以提高其在对抗样本攻击下的鲁棒性。论文的主要贡献如下:

1.MVP 比 MLP-FT 更鲁棒:

论文比较了 MVP (Model-tuning Via Prompts) 和传统的 MLP-FT (Fine-tuning with an MLP head) 方法,发现 MVP 在对抗样本攻击下表现更鲁棒,平均提升 8% 的准确率,甚至在某些情况下超过了基于对抗训练的 SOTA 防御方法。

论文还发现,将 MVP 与单步对抗训练结合,可以进一步提升鲁棒性,而不会影响无对抗样本时的准确率。

2.MVP 更样本高效,有效鲁棒性更高:

论文通过实验证明了 MVP 在低数据环境下比 MLP-FT 更样本高效,即使用更少的训练样本就能达到相同的准确率。

论文还定义了有效鲁棒性指标,用于衡量具有相同无对抗样本准确率的模型的鲁棒性。结果表明,MVP 的有效鲁棒性也比 MLP-FT 更高。

3. MVP 鲁棒性提升的原因:

论文提出了三个假设来解释 MVP 鲁棒性提升的原因:

随机参数脆弱性: MLP-FT 使用随机初始化的线性层,容易导致特征扭曲,从而降低鲁棒性。实验结果表明,减少随机参数数量可以提升模型鲁棒性。

预训练任务对齐: MVP 使用掩码填空任务,与预训练目标更一致,有助于提升鲁棒性。实验结果表明,没有预训练的模型,MVP 和 MLP-FT 的鲁棒性表现相似,说明预训练任务对齐是关键因素。

候选答案语义: 论文发现,即使使用随机候选答案,MVP 的鲁棒性依然很高,说明候选答案的语义与类别标签是否相关并不影响鲁棒性。

4. 人机实验验证对抗样本的有效性:

论文通过人机实验发现,人类标注者更容易识别对抗样本,并且对抗样本的准确率和置信度都低于无对抗样本,说明 MVP 的鲁棒性提升是有效的。
5. MVP 在 OOD 任务上的鲁棒性提升:

论文还发现,MVP 在 OOD (Out-of-Distribution) 任务上的鲁棒性也比 MLP-FT 更高,平均提升 2% 的准确率。
总结:

这篇论文为 NLP 模型的鲁棒性提升提供了一种新的思路,即使用提示方法进行微调。MVP 方法简单易行,无需对抗训练或提示工程,就能有效提升模型在对抗样本攻击下的鲁棒性。未来研究可以探索将 MVP 应用于更大规模的模型,以及更多类型的 NLP 任务。

相关推荐
nwsuaf_huasir几秒前
深度学习1.3-软件篇-2025Pycharm添加导入anaconda中虚拟环境的python解释器以及相关Error解决方案
人工智能·python·深度学习
2301_800256113 分钟前
8.3 查询优化 核心知识点总结
大数据·数据库·人工智能·sql·postgresql
互联网资讯8 分钟前
融合AI大模型的Geo优化系统服务商如何选?避坑指南
大数据·人工智能·ai搜索优化·geo系统·geo优化系统·geo系统搭建
wan55cn@126.com9 分钟前
人生如戏:换个片场,继续出演
人工智能·笔记·百度·微信
搞科研的小刘选手10 分钟前
【广东财经大学主办】2026年人工智能与金融科技国际学术会议(IC-AIF 2026)
大数据·人工智能·金融·学术会议
tiger11915 分钟前
DeepSeek V3.1 的推理解析
人工智能·llm·推理·moe·decode·deepseek·prefill
_oP_i20 分钟前
人工智能在资产评估方面结合
人工智能
修一呀21 分钟前
〖FunASR情绪识别教程〗基于 emotion2vec+ large 的本地语音情绪识别实战
人工智能·语音识别
q_302381955621 分钟前
华为Atlas310意图识别如何实现?
华为·自然语言处理·bert