关于复变函数解析与可导

一般情况下,有lm(z)或|z|存在的函数不可导,但是也有例外,比如 z 2 l m ( z ) z^2 lm(z) z2lm(z),在z=0处 lim ⁡ Δ z → 0 Δ z 2 l m ( Δ z ) Δ z = lim ⁡ Δ z → 0 Δ z l m ( Δ z ) = 0 \underset{\varDelta z\rightarrow 0}{\lim}\frac{\varDelta z^2lm\left( \varDelta z \right)}{\varDelta z}=\underset{\varDelta z\rightarrow 0}{\lim}\varDelta zlm\left( \varDelta z \right) =0 Δz→0limΔzΔz2lm(Δz)=Δz→0limΔzlm(Δz)=0

因此在z=0可导

再比如 ∣ z ∣ 2 \left| z \right|^2 ∣z∣2,同样在z=0可导

一般看f(z)在定义域D内解析只看是否满足柯西-黎曼方程,即 ∂ u ∂ x = ∂ v ∂ y , ∂ u ∂ y = − ∂ v ∂ x \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y},\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} ∂x∂u=∂y∂v,∂y∂u=−∂x∂v两个式子同时成立,但是还要满足u和v在D内可微。

相关推荐
martian66512 天前
AI大模型学习之基础数学:高斯分布-AI大模型概率统计的基石
人工智能·学习·数学·机器学习
IceTeapoy14 天前
【基础概念】蒙特卡洛算法
数学·算法
八一考研数学竞赛15 天前
第十七届全国大学生数学竞赛初赛模拟试题
学习·数学·latex·全国大学生数学竞赛
窗户22 天前
有限Abel群的结构(2)
python·数学·抽象代数
MPCTHU24 天前
机器学习的数学基础:线性模型
数学·机器学习
闻缺陷则喜何志丹1 个月前
【分治法 容斥原理 矩阵快速幂】P6692 出生点|普及+
c++·线性代数·数学·洛谷·容斥原理·分治法·矩阵快速幂
takagi桑咩1 个月前
插值法求解非线性方程
数学
MPCTHU1 个月前
机器学习的数学基础:决策树
数学·机器学习
MPCTHU1 个月前
机器学习的数学基础:假设检验
数学·机器学习
課代表1 个月前
数学知识体系难易程度表及关系
人工智能·数学·机器学习·几何·高等数学·层级·难度