(17)MATLAB使用伽马(gamma)分布生成Nakagami-m分布的方法1

文章目录


前言

MATLAB在R2013a版本中引入Nakagami分布对象,可以用来生成Nakagami随机变量。但是在更早的MATLAB版本中,并没有可以直接生成 Nakagami分布的随机变量的内置的函数。另外,为了深入理解Nakagami分布,有必要研究Nakagami分布的随机变量的生成方法。本文和下一篇文章将给出使用伽马分布生成Nakagami分布随机变量的两种方法。


一、使用伽马分布生成Nakagami分布随机变量的方法一

可以通过以下方式从伽马分布转换得到Nakagami分布随机变量:

其中G是形状参数为m和尺度参数为0.5的伽马分布随机变量,m是Nakagami分布的形状参数。

下面给出使用方法一生成Nakagami 分布随机变量的MATLAB代码。

二、MATLAB仿真代码

使用伽马分布生成Nakagami分布随机变量的MATLAB代码如下:

c 复制代码
clc
clear all
close all
%% 方法一:使用伽马分布转换成Nakagami分布的随机变量
m = 1;                                 % Nakagami分布的形状参数
Omega = 2;                             % Nakagami分布的尺度参数
N = 10000;                             % 随机变量的个数

% 生成伽马分布的随机变量
% B = 0.5;                               % gamma分布的尺度参数
gamma_scale = 0.5;                     % gamma分布的尺度参数
% G = gamrnd(m, B, 1, N);              % 生成1xN的服从伽马分布的随机变量G
G = gamrnd(m, gamma_scale, 1, N);      % 生成1xN的服从伽马分布的随机变量G

% 转换为Nakagami分布的随机变量
X = sqrt(G/m) .* sqrt(2*Omega);


% 绘制生成的随机数的直方图,以概率密度形式
nbins = 50;                           % bin数量
figure()
histogram(X,nbins,'Normalization','pdf','DisplayStyle','bar');
hold on

%% nakagami分布的概率密度的理论值
% Nakagami分布的参数
m = 1;
Omega = 2;

% nakagami分布的概率密度的理论表达式
x = 0.01:0.01:3;
f = (2*m.^m./(gamma(m).*Omega^m)) .* x.^(2*m-1) .* exp(-m*x.^2./Omega);

% figure()
plot(x,f,'LineWidth',1.5)
title('Nakagami分布的概率密度')
legend('概率密度函数的估计值','概率密度函数的理论值')

后续

下一篇给出第二种方法:(18)MATLAB使用伽马(gamma)分布生成Nakagami-m分布的方法2


相关推荐
地平线开发者11 小时前
征程 6 | cgroup sample
算法·自动驾驶
沛沛老爹11 小时前
Java泛型擦除:原理、实践与应对策略
java·开发语言·人工智能·企业开发·发展趋势·技术原理
专注_每天进步一点点12 小时前
【java开发】写接口文档的札记
java·开发语言
代码方舟12 小时前
Java企业级实战:对接天远名下车辆数量查询API构建自动化风控中台
java·大数据·开发语言·自动化
flysh0512 小时前
C# 中类型转换与模式匹配核心概念
开发语言·c#
AC赳赳老秦12 小时前
Python 爬虫进阶:DeepSeek 优化反爬策略与动态数据解析逻辑
开发语言·hadoop·spring boot·爬虫·python·postgresql·deepseek
浩瀚之水_csdn12 小时前
Python 三元运算符详解
开发语言·python
源代码•宸12 小时前
GoLang八股(Go语言基础)
开发语言·后端·golang·map·defer·recover·panic
姓蔡小朋友12 小时前
算法-滑动窗口
算法
rit843249912 小时前
基于MATLAB的SUSAN特征检测算子边缘提取实现
开发语言·matlab