(17)MATLAB使用伽马(gamma)分布生成Nakagami-m分布的方法1

文章目录


前言

MATLAB在R2013a版本中引入Nakagami分布对象,可以用来生成Nakagami随机变量。但是在更早的MATLAB版本中,并没有可以直接生成 Nakagami分布的随机变量的内置的函数。另外,为了深入理解Nakagami分布,有必要研究Nakagami分布的随机变量的生成方法。本文和下一篇文章将给出使用伽马分布生成Nakagami分布随机变量的两种方法。


一、使用伽马分布生成Nakagami分布随机变量的方法一

可以通过以下方式从伽马分布转换得到Nakagami分布随机变量:

其中G是形状参数为m和尺度参数为0.5的伽马分布随机变量,m是Nakagami分布的形状参数。

下面给出使用方法一生成Nakagami 分布随机变量的MATLAB代码。

二、MATLAB仿真代码

使用伽马分布生成Nakagami分布随机变量的MATLAB代码如下:

c 复制代码
clc
clear all
close all
%% 方法一:使用伽马分布转换成Nakagami分布的随机变量
m = 1;                                 % Nakagami分布的形状参数
Omega = 2;                             % Nakagami分布的尺度参数
N = 10000;                             % 随机变量的个数

% 生成伽马分布的随机变量
% B = 0.5;                               % gamma分布的尺度参数
gamma_scale = 0.5;                     % gamma分布的尺度参数
% G = gamrnd(m, B, 1, N);              % 生成1xN的服从伽马分布的随机变量G
G = gamrnd(m, gamma_scale, 1, N);      % 生成1xN的服从伽马分布的随机变量G

% 转换为Nakagami分布的随机变量
X = sqrt(G/m) .* sqrt(2*Omega);


% 绘制生成的随机数的直方图,以概率密度形式
nbins = 50;                           % bin数量
figure()
histogram(X,nbins,'Normalization','pdf','DisplayStyle','bar');
hold on

%% nakagami分布的概率密度的理论值
% Nakagami分布的参数
m = 1;
Omega = 2;

% nakagami分布的概率密度的理论表达式
x = 0.01:0.01:3;
f = (2*m.^m./(gamma(m).*Omega^m)) .* x.^(2*m-1) .* exp(-m*x.^2./Omega);

% figure()
plot(x,f,'LineWidth',1.5)
title('Nakagami分布的概率密度')
legend('概率密度函数的估计值','概率密度函数的理论值')

后续

下一篇给出第二种方法:(18)MATLAB使用伽马(gamma)分布生成Nakagami-m分布的方法2


相关推荐
小赵起名困难户1 小时前
蓝桥杯备赛1-2合法日期
算法
shichaog1 小时前
腿足机器人之八- 腿足机器人动力学
算法·机器人
玩电脑的辣条哥2 小时前
Python如何播放本地音乐并在web页面播放
开发语言·前端·python
悄悄敲敲敲3 小时前
C++:dfs习题四则
c++·算法·深度优先
牛大了20234 小时前
[LeetCode力扣hot100]-二叉树相关手撕题
算法·leetcode·职场和发展
ll7788114 小时前
LeetCode每日精进:20.有效的括号
c语言·开发语言·算法·leetcode·职场和发展
德先生&赛先生4 小时前
LeetCode-633. 平方数之和
数据结构·算法·leetcode
Jackson@ML6 小时前
Python数据可视化简介
开发语言·python·数据可视化
赵琳琅6 小时前
Java语言的云计算
开发语言·后端·golang
lly2024066 小时前
jQuery 杂项方法
开发语言