OpenCV中的背景建模是一种在计算机视觉中常用的技术,主要用于从视频或图像序列中分离出前景(运动物体)和背景。以下将详细介绍OpenCV中几种常见的背景建模方法:
1. 帧差法(非直接称为backgroundSubtractor
)
帧差法不是OpenCV中直接称为backgroundSubtractor
的类,但它是一种简单的背景分割技术。它基于连续帧之间的差异来检测运动。具体地,它计算相邻帧之间的像素差异,并将差异大于某个阈值的像素视为前景(运动物体)。帧差法的优点是计算简单、实时性好,但缺点是容易受到光照变化、阴影和快速移动物体的影响,且可能产生空洞和噪声。
2. 基于K近邻的背景/前景分割算法(BackgroundSubtractorKNN
)
BackgroundSubtractorKNN
是OpenCV中提供的一种基于K近邻(KNN)算法的背景分割方法。它使用像素的颜色和位置信息来为每个像素维护一个样本集,并基于这些样本来估计背景模型。对于每个新帧中的像素,算法会查找其K个最近的邻居,并根据这些邻居的颜色分布来判断该像素是否属于背景。BackgroundSubtractorKNN
对于处理动态背景和光照变化具有较好的鲁棒性,但计算复杂度相对较高,可能不适合实时性要求非常高的应用。
3. 基于高斯混合的背景/前景分割算法(BackgroundSubtractorMOG2
)
BackgroundSubtractorMOG2
是OpenCV中另一种流行的背景分割方法,它是基于高斯混合模型(GMM)的改进版本。该方法为每个像素维护一个高斯混合模型,该模型可以表示像素值的多种可能状态(如光照变化、阴影等)。对于每个新帧中的像素,算法会更新其对应的高斯混合模型,并根据模型来判断该像素是否属于背景。BackgroundSubtractorMOG2
对于处理复杂场景和光照变化具有较好的效果,且计算效率较高,适合实时应用。
示例:
python
import os
import cv2
# cap = cv2.VideoCapture(0)
cap = cv2.VideoCapture('test.avi')
kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3))
fgbg = cv2.createBackgroundSubtractorMOG2()
while (True):
ret, frame = cap.read() # ret:True表示正常读取到图像,frame:从视频中获取当前一帧图片
cv2.imshow('frame', frame)
fgmask = fgbg.apply(frame) # 视频处理
cv2.imshow('fgmask', fgmask)
fgmask_new = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel) # 开运算去点,先腐蚀后膨胀。
cv2.imshow('fgmask1', fgmask_new)
_,contours,h = cv2.findContours(fgmask_new,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
for c in contours:
# 计算各轮廨的周长
perimeter = cv2.arcLength(c, True)
if perimeter > 188:
# 找到一个直知形(不会旋转)
x, y, w, h = cv2.boundingRect(c) # 画出这个知形
fgmask_new_rect = cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.imshow( 'fgmask_new_rect', fgmask_new_rect)
k = cv2.waitKey(60)
if k == 27:
break
实际应用
在实际应用中,可以根据具体需求选择合适的背景建模方法。例如,对于实时性要求较高的应用,可以选择计算效率较高的帧差法或MOG2算法;对于需要高精度分割的应用,则可以考虑使用GrabCut算法等。
总的来说,OpenCV提供了多种背景建模方法,可以根据不同的应用场景和需求进行选择和调整。
三、总结
OpenCV提供了多种背景建模方法,包括帧差法和混合高斯模型等。这些方法各有优缺点,适用于不同的应用场景。通过合理选择和使用这些方法,我们可以有效地从视频或图像序列中分离出前景和背景,为后续的目标检测、跟踪等任务提供有力支持。希望本文能够帮助读者更好地理解OpenCV中的背景建模技术,并在实际项目中加以应用。