线性代数杂谈(2)——逆,转置与置换矩阵

本文章将会围绕着矩阵的逆与转置这两种运算讲述,旨在通过此加深你对矩阵的理解与进一步熟悉这两种运算。

矩阵的逆

A A − 1 = I AA^{-1}=I AA−1=I

方阵 A A A(注意:只有方阵才存在逆的概念)乘方阵 A − 1 A^{-1} A−1的带单位矩阵 I I I,我们就说矩阵 A − 1 A^{-1} A−1是矩阵 A A A的逆。

从另一个更深的角度理解,矩阵的逆即是还原操作,用MIT教授的话比喻,就像穿上袜子后要脱下袜子的操作一样。下面我们来看一个例子:

1 0 0 − 2 1 0 0 0 1 \begin{matrix} 1 & 0 & 0\\ -2 & 1 & 0\\ 0 & 0 & 1 \end{matrix} \ 1−20010001

这个矩阵是我们熟悉的消元矩阵,即 E 2 , 1 E_{2,1} E2,1,用以产生(2,1)处的0,具体代表操作是(左乘)将矩阵A的第二行变为-2倍的第一行加上1倍的第二行的线性组合。

那么这个消元矩阵的逆你是否能直接想出来呢?矩阵的逆如下:

1 0 0 2 1 0 0 0 1 \begin{matrix} 1 & 0 & 0\\ 2 & 1 & 0\\ 0 & 0 & 1 \end{matrix} \ 120010001

可以考虑如下思路:

我们要求的矩阵乘消元矩阵得到的结果是单位矩阵。而消元矩阵的作用是将矩阵A的第二行变为-2倍的第一行加上1倍的第二行,那么要将此结果变回单位矩阵,只需加上二倍的第二行,原矩阵就变回了单位矩阵。

简言之,矩阵的逆即是如此的还原操作。


矩阵的转置

转置可以有几种不同的方法来认识它,这里仅分为代数和图形两种方向。

转置可以直接理解为行与列的交换,即矩阵A中位置 ( i , j ) (i,j) (i,j)的元素,将会出现在其转置矩阵的 ( j , i ) (j,i) (j,i)位置。

从图形上来说,矩阵的转置即是让原矩阵以正对角线为轴进行对称变换。

示例: 1 0 0 2 1 0 0 0 1 \begin{matrix} 1 & 0 & 0\\ 2 & 1 & 0\\ 0 & 0 & 1 \end{matrix} 120010001此矩阵的转置为: 1 2 0 0 1 0 0 0 1 \begin{matrix} 1 & 2 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{matrix} 100210001

从图形上的理解也告诉我们,应该存在这么一类矩阵,它们沿正对角线对称,可得到

A = A T 这里的上标 T 是转置 t r a n s p o s e 的缩写,表示转置操作 A=A^T这里的上标T是转置transpose的缩写,表示转置操作 A=AT这里的上标T是转置transpose的缩写,表示转置操作

而我们称这样的矩阵为对称矩阵。

转置的性质

基础运算

( A + B ) T = A T + B T (A+B)^T=A^T+B^T (A+B)T=AT+BT

这应该很好理解,A和B能求和意味着A与B形状相同,求和运算是相加相同位置的两个元素,那么将其沿对角线翻转过后结果同样不会改变。


( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT

推导:

我们先从 ( A x ) T (Ax)^T (Ax)T开始理解,考虑 x x x为一个列向量。

( A x ) T = x T A T (Ax)^T=x^TA^T (Ax)T=xTAT这一点似乎是理所当然的,是吗?因为 A x Ax Ax是矩阵A的行的线性组合,将其转置后,要得到同样的结果,就需要 A T A^T AT的行的线性组合,即 x T x^T xT应该放在 A T A^T AT的左边。

以同样的思维思考,当" x x x"变为2列,3列,n列也应是同样的道理。因此, ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT


( A − 1 ) T = ( A T ) − 1 (A^{-1})^T=(A^T)^{-1} (A−1)T=(AT)−1

这一点也很好证明,如下:

A − 1 A = I ( A − 1 A ) T = A T ( A − 1 ) T = I → ( A − 1 ) T = ( A T ) − 1 A^{-1}A=I\\(A^{-1}A)^T=A^T(A^{-1})^T=I\\ \rightarrow (A^{-1})^T=(A^T)^{-1} A−1A=I(A−1A)T=AT(A−1)T=I→(A−1)T=(AT)−1


矩阵乘其转置为对称矩阵

任意矩阵R,不管它对不对称,R乘以其转置得到的一定是对称矩阵:

R R T 一定为对称矩阵 RR^T一定为对称矩阵 RRT一定为对称矩阵

示例:举一个3×2的矩阵 R R R(转置不同于逆,不要求一定为方阵),乘其转置 R T R^T RT将得到对称矩阵。

[ 1 3 2 3 4 1 ] [ 1 2 4 3 3 1 ] = [ 10 11 7 11 . . . . . . 7 . . . . . . ] \left[ \begin{matrix} 1 & 3 \\ 2 & 3 \\ 4 & 1 \end{matrix} \right] \left[ \begin{matrix} 1 & 2 & 4 \\ 3 & 3 & 1 \end{matrix} \right] = \left[\begin{matrix} 10 & 11 & 7 \\ 11 & ...& ... \\ 7 & ... &... \end{matrix} \right] 124331 [132341]= 1011711......7......

为方便观察规律,这里用的矩阵乘法方法为 a i , j = r o w i × c o l u m n j a_{i,j}=row_i\times column_j ai,j=rowi×columnj

结果矩阵 (1,1) 位置元素是 1 × 1 + 3 × 3 = 10 1\times1+3\times3=10 1×1+3×3=10 好吧,(1,1) 其实不重要

结果矩阵 (1,2) 位置元素是 1 × 2 + 3 × 3 = 11 1\times2+3\times3=11 1×2+3×3=11

结果矩阵 (2,1) 位置元素是 2 × 1 + 3 × 3 = 11 2\times1+3\times3=11 2×1+3×3=11

结果矩阵 (1,3) 位置元素是 1 × 4 + 3 × 1 = 7 1\times4+3\times1=7 1×4+3×1=7

结果矩阵 (1,3) 位置元素是 4 × 1 + 1 × 3 = 7 4\times1+1\times3=7 4×1+1×3=7

相信大家看了这两组位置对称元素的计算,就能直观感受到 R R T = 对称矩阵 RR^T=对称矩阵 RRT=对称矩阵了。

其实要证明的话也只很简单:

( R R T ) T = R T ( R T ) T = R T R (RR^T)^T=R^T(R^T)^T=R^TR (RRT)T=RT(RT)T=RTR


置换矩阵

置换矩阵 P P P是与行变换息息相关的概念,或者说如消元矩阵代表了消元操作一样,置换矩阵代表了行变换操作。

以3×3矩阵为例,行变换操作即为交换行与行之间的元素,不改变元素本身。

要使一个矩阵的第一行与第三行交换位置,即我们需要如下置换矩阵 P 1 , 3 P_{1,3} P1,3:

0 0 1 0 1 0 1 0 0 \begin{matrix} 0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0 \end{matrix} 001010100

如果你对线性组合足够熟悉,那么得到这个置换矩阵是理所当然的,这里就不再展开分析。

置换矩阵的性质

第一个问题,n*n的矩阵有多少个置换矩阵?这个问题很简单, A n n A_n^n Ann嘛,即 n ! n! n!,从1乘到n。


性质二:对于n*n的矩阵中所有置换矩阵组成一个集合来说:

集合中任意元素的逆在集合中。

集合中所有元素的积的结果是单位矩阵。

相关推荐
一位小说男主6 分钟前
线性分类器全解析:Logistic 回归、Softmax 回归、感知器和支持向量机
人工智能·深度学习·机器学习·回归
終不似少年遊*1 小时前
数学知识1
人工智能·学习·算法·机器学习·数学建模
垂杨有暮鸦⊙_⊙2 小时前
蒙特卡洛方法(Monte Carlo,MC)
人工智能·笔记·机器学习·概率论
初级炼丹师(爱说实话版)3 小时前
nn.MultiheadAttention返回的注意力权重和标准的计算注意力权重的区别
人工智能·深度学习·机器学习
終不似少年遊*3 小时前
数据分析-机器学习-第三方库使用基础
python·机器学习·数据挖掘·数据分析·numpy
搞笑症患者4 小时前
LeetCode Hot100 - 矩阵篇
算法·leetcode·矩阵
2403_875180954 小时前
抖音SEO矩阵系统:开发技术分享
线性代数·矩阵
抓哇能手8 小时前
机器学习基础
人工智能·opencv·算法·机器学习·计算机视觉·机器视觉
iiiiiankor8 小时前
LeetCode54.螺旋矩阵&& LeetCode59.螺旋矩阵Ⅱ(螺旋矩阵问题)
线性代数·矩阵
乐呦刘、12 小时前
nature communications论文 解读
人工智能·深度学习·机器学习