目录
1.内容介绍
2部分代码
3.实验结果
4.内容获取
1内容介绍
海鸥优化算法(Seagull Optimization Algorithm, SOA)是一种受海鸥觅食和飞行行为启发的群体智能优化算法。SOA通过模拟海鸥在空中搜寻食物、聚集和分散的行为模式,来探索和开发解空间,寻找最优解。该算法的特点是具有较强的探索能力和较快的收敛速度,适合解决多模态和高维优化问题。不过,SOA也存在一些潜在的缺点,比如在某些情况下可能会出现早熟收敛,即过早地停止在局部最优解附近。
回声状态网络(Echo State Network, ESN)作为一种轻量级的递归神经网络,其核心思想是在一个固定的、随机生成的"储备池"中传递输入信号,通过调整输出层的权重来完成训练。ESN的优点在于训练过程简单快捷,能够有效地处理时间序列数据。然而,ESN的性能高度依赖于几个关键超参数的设置,如储备池的大小、输入权重的分布等,不当的超参数选择可能导致模型过拟合或欠拟合。
利用SOA优化ESN的超参数,可以充分发挥SOA的全局搜索能力,帮助ESN找到最佳的超参数配置,进而提升模型的预测准确性和稳定性。这种结合方式不仅增强了ESN在时间序列预测、模式识别等领域的应用效果,也为SOA在解决实际工程问题中提供了更多的可能性,如电力负荷预测、金融市场分析等。通过这种方式,SOA与ESN的结合展现了群体智能算法与机器学习技术融合的广阔前景。
2部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
tic
load bwand
%% 导入数据
x=bwand;
r,s\] = size(x); output=x(:,s); input=x(:,1:s-1); %nox %% 划分训练集和测试集 M = size(P_train, 2); N = size(P_test, 2); %% 数据归一化 \[p_train, ps_input\] = mapminmax(P_train, 0, 1); p_test = mapminmax('apply', P_test, ps_input); \[t_train, ps_output\] = mapminmax(T_train, 0, 1); t_test = mapminmax('apply', T_test, ps_output); %% 获取最优参数 hidden = WBest_pos(1); % 储备池规模 lr = WBest_pos(2); % 学习率(更新速度) reg = WBest_pos(3); % 正则化系数 %% 训练模型 net = esn_train(p_train, t_train, hidden, lr, Init, reg); %% 预测 t_sim1 = esn_sim(net, p_train); t_sim2 = esn_sim(net, p_test ); %% 数据反归一化 T_sim1 = mapminmax('reverse', t_sim1, ps_output); T_sim2 = mapminmax('reverse', t_sim2, ps_output); %% 均方根误差 error1 = sqrt(sum((T_sim1 - T_train).\^2) ./ M); error2 = sqrt(sum((T_sim2 - T_test ).\^2) ./ N); %% 绘图 %% 测试集结果 figure; plotregression(T_test,T_sim2,\['回归图'\]); figure; ploterrhist(T_test-T_sim2,\['误差直方图'\]); %% 预测集绘图 figure plot(1:N,T_test,'r-\*',1:N,T_sim2,'b-+','LineWidth',0.5) legend('真实值','SOA-ESN预测值') xlabel('预测样本') ylabel('预测结果') string={'测试集预测结果对比';\['(R\^2 =' num2str(R2) ' RMSE= ' num2str(error2) ' MSE= ' num2str(mse2) ' RPD= ' num2str(RPD2) ')'\]}; title(string) %% 测试集误差图 figure ERROR3=T_test-T_sim2 plot(T_test-T_sim2,'b-\*','LineWidth',0.5) xlabel('测试集样本编号') ylabel('预测误差') title('测试集预测误差') grid on; legend('SOA-ESN预测输出误差') **3实验结果**  **4内容获取** **主页简介欢迎自取,点点关注,非常感谢! Matlab实现SOA-ESN海鸥优化算法优化回声状态网络模型源码介绍:** MATLAB完整源码和数据(MATLAB完整源码+数据)(excel数据可替换), 1.多种变量输入,单个变量输出; 2.MatlabR2018b及以上版本一键运行; 3.具有良好的编程习惯,程序均包含简要注释。