Matlab实现海鸥优化算法优化回声状态网络模型 (SOA-ESN)(附源码)

目录

1.内容介绍

2部分代码

3.实验结果

4.内容获取

1内容介绍

海鸥优化算法(Seagull Optimization Algorithm, SOA)是一种受海鸥觅食和飞行行为启发的群体智能优化算法。SOA通过模拟海鸥在空中搜寻食物、聚集和分散的行为模式,来探索和开发解空间,寻找最优解。该算法的特点是具有较强的探索能力和较快的收敛速度,适合解决多模态和高维优化问题。不过,SOA也存在一些潜在的缺点,比如在某些情况下可能会出现早熟收敛,即过早地停止在局部最优解附近。

回声状态网络(Echo State Network, ESN)作为一种轻量级的递归神经网络,其核心思想是在一个固定的、随机生成的"储备池"中传递输入信号,通过调整输出层的权重来完成训练。ESN的优点在于训练过程简单快捷,能够有效地处理时间序列数据。然而,ESN的性能高度依赖于几个关键超参数的设置,如储备池的大小、输入权重的分布等,不当的超参数选择可能导致模型过拟合或欠拟合。

利用SOA优化ESN的超参数,可以充分发挥SOA的全局搜索能力,帮助ESN找到最佳的超参数配置,进而提升模型的预测准确性和稳定性。这种结合方式不仅增强了ESN在时间序列预测、模式识别等领域的应用效果,也为SOA在解决实际工程问题中提供了更多的可能性,如电力负荷预测、金融市场分析等。通过这种方式,SOA与ESN的结合展现了群体智能算法与机器学习技术融合的广阔前景。

2部分代码

%% 清空环境变量

warning off % 关闭报警信息

close all % 关闭开启的图窗

clear % 清空变量

clc % 清空命令行

tic

load bwand

%% 导入数据

x=bwand;

r,s\] = size(x); output=x(:,s); input=x(:,1:s-1); %nox %% 划分训练集和测试集 M = size(P_train, 2); N = size(P_test, 2); %% 数据归一化 \[p_train, ps_input\] = mapminmax(P_train, 0, 1); p_test = mapminmax('apply', P_test, ps_input); \[t_train, ps_output\] = mapminmax(T_train, 0, 1); t_test = mapminmax('apply', T_test, ps_output); %% 获取最优参数 hidden = WBest_pos(1); % 储备池规模 lr = WBest_pos(2); % 学习率(更新速度) reg = WBest_pos(3); % 正则化系数 %% 训练模型 net = esn_train(p_train, t_train, hidden, lr, Init, reg); %% 预测 t_sim1 = esn_sim(net, p_train); t_sim2 = esn_sim(net, p_test ); %% 数据反归一化 T_sim1 = mapminmax('reverse', t_sim1, ps_output); T_sim2 = mapminmax('reverse', t_sim2, ps_output); %% 均方根误差 error1 = sqrt(sum((T_sim1 - T_train).\^2) ./ M); error2 = sqrt(sum((T_sim2 - T_test ).\^2) ./ N); %% 绘图 %% 测试集结果 figure; plotregression(T_test,T_sim2,\['回归图'\]); figure; ploterrhist(T_test-T_sim2,\['误差直方图'\]); %% 预测集绘图 figure plot(1:N,T_test,'r-\*',1:N,T_sim2,'b-+','LineWidth',0.5) legend('真实值','SOA-ESN预测值') xlabel('预测样本') ylabel('预测结果') string={'测试集预测结果对比';\['(R\^2 =' num2str(R2) ' RMSE= ' num2str(error2) ' MSE= ' num2str(mse2) ' RPD= ' num2str(RPD2) ')'\]}; title(string) %% 测试集误差图 figure ERROR3=T_test-T_sim2 plot(T_test-T_sim2,'b-\*','LineWidth',0.5) xlabel('测试集样本编号') ylabel('预测误差') title('测试集预测误差') grid on; legend('SOA-ESN预测输出误差') **3实验结果** ![](https://i-blog.csdnimg.cn/direct/72ee842759e64ef1a46e397293485008.jpeg)![](https://i-blog.csdnimg.cn/direct/479bbbab1ae44f1f9e36b1f83ed70c40.jpeg)![](https://i-blog.csdnimg.cn/direct/f782790afa7e4b08a836475959717f87.jpeg)![](https://i-blog.csdnimg.cn/direct/f0e6d863721a4cf69e44a19a82772bf2.jpeg) **4内容获取** **主页简介欢迎自取,点点关注,非常感谢! Matlab实现SOA-ESN海鸥优化算法优化回声状态网络模型源码介绍:** MATLAB完整源码和数据(MATLAB完整源码+数据)(excel数据可替换), 1.多种变量输入,单个变量输出; 2.MatlabR2018b及以上版本一键运行; 3.具有良好的编程习惯,程序均包含简要注释。

相关推荐
拓端研究室40 分钟前
视频讲解:门槛效应模型Threshold Effect分析数字金融指数与消费结构数据
前端·算法
随缘而动,随遇而安3 小时前
第八十八篇 大数据中的递归算法:从俄罗斯套娃到分布式计算的奇妙之旅
大数据·数据结构·算法
美狐美颜sdk3 小时前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
DeepSeek-大模型系统教程3 小时前
推荐 7 个本周 yyds 的 GitHub 项目。
人工智能·ai·语言模型·大模型·github·ai大模型·大模型学习
郭庆汝3 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
IT古董3 小时前
【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
神经网络·算法·机器学习
小雷FansUnion5 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周5 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
黄雪超6 小时前
JVM——函数式语法糖:如何使用Function、Stream来编写函数式程序?
java·开发语言·jvm
ThetaarSofVenice6 小时前
对象的finalization机制Test
java·开发语言·jvm