【自动驾驶】《Planning-oriented Autonomous Driving》UniAD论文阅读笔记

目录

1.参考

2.摘要

3.介绍

4.方法

5.实验

(1)消融实验

(2)模块性能对比

(3)模块组件的消融实验

(4)可视化结果

6.未来可能要做的事


1.参考

论文:https://arxiv.org/pdf/2212.10156

代码:https://github.com/OpenDriveLab/UniAD

2.摘要

原来的自动驾驶任务都是分为模块化的,感知,预测,规划等。每个独立的任务可能都优化得很好,但可能会存在累积误差或者各个独立的任务之间协调不足。

提出一种统一的框架,uniAD,利用各个模块的优势,以全局角度为智能体交互提供互补的特征抽象。在nuScences数据集上有SOTA的表现。

3.介绍

由多个独立的任务,到多任务学习(通过共用backbone,使用不同的head,来训练不同的任务),并将其扩展到tranformer BEV等,mobileye,tesla,nvidia均在上面做了一些个性化的产品。该方法降低车载芯片的计算代价。

端到端的自动驾驶将所有的节点融合在一起,感知,预测,规划。

为了实现可靠地以规划为导向的自动驾驶系统,应该如何设计有利于规划的pipeline ?

UniAD的关键组件是基于查询的设计,用于连接所有节点。

贡献:

(1)基于规划导向的理念

(2)提出UniAD,一种端到端的自动驾驶系统

(3)在现实场景的benchmark上测试,具有SOTA的性能。

4.方法

UniAD包括四个基于编码器的transformer,TrackFormer,MapFormer,MotionFormer,OccFormer,Planner。

(1)TrackFormer联合检测和跟踪。检测到新帧目标到跟踪会生成新目标,下一帧查询上一帧交互在self-attention 模块中聚合时态信息,直至该智能体agent消失,将自车也作为一个智能体引入。其中该智能体传给MotionFormer。

(2)MapFormer二维全景分割,作为地图信息来查询,含车道线分隔线,交叉路口

(3)MotionFormer捕获三种交互,agent-agent,agent-map,agent-goal point。轨迹预测。

(4)OccFormer实例级别的占用。

(5)Planning,没有HD和道路信息,将原始导航信号(左转、右转、直行)转换为三个可学习的embedding。通过MotionFormer可以查询自车周边的多模态意图(其他agent)、OccFormer查询周围环境,解码为周围路点。避免碰撞优化下面的代价函数。

训练:是一个两阶段的训练任务,先训练感知。然后再训练端到端的任务20epoch。

5.实验

实验在Nuscences数据集上进行的。

(1)消融实验

UniAD方法比ID-0这种通过多个检测头的多任务学习性能更好。

(2)模块性能对比

(3)模块组件的消融实验

(4)可视化结果

6.未来可能要做的事

(1)如何为轻量级部署设计和管理系统值得未来探索。

(2)是否将更多的任务(如深度估计、行为预测)以及如何将其嵌入系统中,也是值得未来研究的方向。

相关推荐
吉大一菜鸡1 小时前
FPGA学习(基于小梅哥Xilinx FPGA)学习笔记
笔记·学习·fpga开发
CCSBRIDGE3 小时前
Magento2项目部署笔记
笔记
实验室里哈啤酒4 小时前
ResEmoteNet论文阅读与推理
论文阅读
亦枫Leonlew4 小时前
微积分复习笔记 Calculus Volume 2 - 5.1 Sequences
笔记·数学·微积分
爱码小白5 小时前
网络编程(王铭东老师)笔记
服务器·网络·笔记
LuH11245 小时前
【论文阅读笔记】Learning to sample
论文阅读·笔记·图形渲染·点云
一棵开花的树,枝芽无限靠近你7 小时前
【PPTist】组件结构设计、主题切换
前端·笔记·学习·编辑器
犬余7 小时前
设计模式之桥接模式:抽象与实现之间的分离艺术
笔记·学习·设计模式·桥接模式
数据爬坡ing8 小时前
小白考研历程:跌跌撞撞,起起伏伏,五个月备战历程!!!
大数据·笔记·考研·数据分析
咖肥猫8 小时前
【ue5学习笔记2】在场景放入一个物体的蓝图输入事件无效?
笔记·学习·ue5