神经网络章节感知机部分 空间中任意一点到线性分割超平面的距离公式 解释说明

公式 8-3 的内容如下:
1 ∣ ∣ w ∣ ∣ ∣ w ⋅ x 0 + b ∣ \frac{1}{||w||} |w \cdot x_0 + b| ∣∣w∣∣1∣w⋅x0+b∣

公式 8-3 的详细解释:

这个公式表示某个点 x 0 x_0 x0 到一个超平面的距离,其中:

  • w w w 是感知机的权重向量。
  • b b b 是感知机的偏置项(或阈值)。
  • x 0 x_0 x0 是你要计算到超平面距离的点。
  • ∣ ∣ w ∣ ∣ ||w|| ∣∣w∣∣ 表示权重向量 w w w 的 L2 范数,即 w w w 的长度(欧几里得长度)。
  • w ⋅ x 0 w \cdot x_0 w⋅x0 表示向量 w w w 和点 x 0 x_0 x0 的点积。

公式的形式是通过点积 w ⋅ x 0 + b w \cdot x_0 + b w⋅x0+b 表示 x 0 x_0 x0 点相对于超平面的位置,然后通过除以权重向量 w w w 的 L2 范数来标准化,这样得到的就是该点到超平面的垂直距离

解释步骤:

  1. w ⋅ x 0 + b w \cdot x_0 + b w⋅x0+b

    • 这个表达式表示 x 0 x_0 x0 代入超平面方程 w ⋅ x + b = 0 w \cdot x + b = 0 w⋅x+b=0 后的值。它可以看作 x 0 x_0 x0 点相对于超平面的"签名距离"(带正负符号的距离)。如果结果为正,则点 x 0 x_0 x0 在超平面的一侧;如果为负,则在另一侧;如果为零,则点 x 0 x_0 x0 刚好位于超平面上。
  2. ∣ ∣ w ∣ ∣ ||w|| ∣∣w∣∣

    • ∣ ∣ w ∣ ∣ ||w|| ∣∣w∣∣ 是权重向量 w w w 的 L2 范数,即权重向量的欧几里得长度。它用于将点积结果进行标准化,使得我们得到的距离是点到超平面的垂直距离,而不是简单的点积结果。
  3. 1 ∣ ∣ w ∣ ∣ \frac{1}{||w||} ∣∣w∣∣1

    • 通过将点积结果除以 ∣ ∣ w ∣ ∣ ||w|| ∣∣w∣∣,我们消除了方向的影响,得到的是点 x 0 x_0 x0 到超平面的最短距离 ,而不是简单的欧几里得距离。这确保了无论 w w w 向量的大小如何,计算出的距离都能正确反映点到超平面的真实距离。
  4. ∣ w ⋅ x 0 + b ∣ |w \cdot x_0 + b| ∣w⋅x0+b∣

    • 绝对值符号消除了结果的正负号,使我们关心的只是距离的大小,而不是点位于超平面的哪一侧。

几何解释:

超平面可以看作是 n 维空间中的一个 ( n − 1 ) (n-1) (n−1) 维的分隔线或分隔面。公式 8-3 表示从点 x 0 x_0 x0 垂直到超平面的距离。这个公式给出的距离是经过标准化的,因此它独立于权重 w w w 的规模。

总结:

公式 8-3 给出了任意输入点 x 0 x_0 x0 到由权重向量 w w w 和偏置 b b b 所定义的超平面的垂直距离。这在感知机学习中很重要,因为我们希望通过调整权重和偏置,将误分类样本的距离缩短,从而将它们正确分类到超平面的一侧。

相关推荐
Coding茶水间4 分钟前
基于深度学习的水果检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
檐下翻书1737 分钟前
算法透明度审核:AI 决策的 “黑箱” 如何被打开?
人工智能
undsky_9 分钟前
【RuoYi-SpringBoot3-Pro】:接入 AI 对话能力
人工智能·spring boot·后端·ai·ruoyi
网易伏羲20 分钟前
网易伏羲受邀出席2025具身智能人形机器人年度盛会,并荣获“偃师·场景应用灵智奖
人工智能·群体智能·具身智能·游戏ai·网易伏羲·网易灵动·网易有灵智能体
搬砖者(视觉算法工程师)24 分钟前
什么是无监督学习?理解人工智能中无监督学习的机制、各类算法的类型与应用
人工智能
西格电力科技30 分钟前
面向工业用户的绿电直连架构适配技术:高可靠与高弹性的双重设计
大数据·服务器·人工智能·架构·能源
TextIn智能文档云平台34 分钟前
图片转文字后怎么输入大模型处理
前端·人工智能·python
Hy行者勇哥34 分钟前
从零搭建小智 AI 音箱 MCP 开发环境:自定义智能家居控制技能实战指南
人工智能·嵌入式硬件·硬件工程·智能家居
leaf_leaves_leaf34 分钟前
强化学习奖励曲线
人工智能
数据的世界0135 分钟前
重构智慧书-第18条:实力与实干
人工智能