神经网络章节感知机部分 空间中任意一点到线性分割超平面的距离公式 解释说明

公式 8-3 的内容如下:
1 ∣ ∣ w ∣ ∣ ∣ w ⋅ x 0 + b ∣ \frac{1}{||w||} |w \cdot x_0 + b| ∣∣w∣∣1∣w⋅x0+b∣

公式 8-3 的详细解释:

这个公式表示某个点 x 0 x_0 x0 到一个超平面的距离,其中:

  • w w w 是感知机的权重向量。
  • b b b 是感知机的偏置项(或阈值)。
  • x 0 x_0 x0 是你要计算到超平面距离的点。
  • ∣ ∣ w ∣ ∣ ||w|| ∣∣w∣∣ 表示权重向量 w w w 的 L2 范数,即 w w w 的长度(欧几里得长度)。
  • w ⋅ x 0 w \cdot x_0 w⋅x0 表示向量 w w w 和点 x 0 x_0 x0 的点积。

公式的形式是通过点积 w ⋅ x 0 + b w \cdot x_0 + b w⋅x0+b 表示 x 0 x_0 x0 点相对于超平面的位置,然后通过除以权重向量 w w w 的 L2 范数来标准化,这样得到的就是该点到超平面的垂直距离

解释步骤:

  1. w ⋅ x 0 + b w \cdot x_0 + b w⋅x0+b

    • 这个表达式表示 x 0 x_0 x0 代入超平面方程 w ⋅ x + b = 0 w \cdot x + b = 0 w⋅x+b=0 后的值。它可以看作 x 0 x_0 x0 点相对于超平面的"签名距离"(带正负符号的距离)。如果结果为正,则点 x 0 x_0 x0 在超平面的一侧;如果为负,则在另一侧;如果为零,则点 x 0 x_0 x0 刚好位于超平面上。
  2. ∣ ∣ w ∣ ∣ ||w|| ∣∣w∣∣

    • ∣ ∣ w ∣ ∣ ||w|| ∣∣w∣∣ 是权重向量 w w w 的 L2 范数,即权重向量的欧几里得长度。它用于将点积结果进行标准化,使得我们得到的距离是点到超平面的垂直距离,而不是简单的点积结果。
  3. 1 ∣ ∣ w ∣ ∣ \frac{1}{||w||} ∣∣w∣∣1

    • 通过将点积结果除以 ∣ ∣ w ∣ ∣ ||w|| ∣∣w∣∣,我们消除了方向的影响,得到的是点 x 0 x_0 x0 到超平面的最短距离 ,而不是简单的欧几里得距离。这确保了无论 w w w 向量的大小如何,计算出的距离都能正确反映点到超平面的真实距离。
  4. ∣ w ⋅ x 0 + b ∣ |w \cdot x_0 + b| ∣w⋅x0+b∣

    • 绝对值符号消除了结果的正负号,使我们关心的只是距离的大小,而不是点位于超平面的哪一侧。

几何解释:

超平面可以看作是 n 维空间中的一个 ( n − 1 ) (n-1) (n−1) 维的分隔线或分隔面。公式 8-3 表示从点 x 0 x_0 x0 垂直到超平面的距离。这个公式给出的距离是经过标准化的,因此它独立于权重 w w w 的规模。

总结:

公式 8-3 给出了任意输入点 x 0 x_0 x0 到由权重向量 w w w 和偏置 b b b 所定义的超平面的垂直距离。这在感知机学习中很重要,因为我们希望通过调整权重和偏置,将误分类样本的距离缩短,从而将它们正确分类到超平面的一侧。

相关推荐
AndrewHZ23 分钟前
【3D重建技术】如何基于遥感图像和DEM等数据进行城市级高精度三维重建?
图像处理·人工智能·深度学习·3d·dem·遥感图像·3d重建
飞哥数智坊30 分钟前
Coze实战第18讲:Coze+计划任务,我终于实现了企微资讯简报的定时推送
人工智能·coze·trae
WBluuue44 分钟前
数学建模:智能优化算法
python·机器学习·数学建模·爬山算法·启发式算法·聚类·模拟退火算法
Code_流苏1 小时前
AI热点周报(8.10~8.16):AI界“冰火两重天“,GPT-5陷入热议,DeepSeek R2模型训练受阻?
人工智能·gpt·gpt5·deepseek r2·ai热点·本周周报
赴3351 小时前
矿物分类案列 (一)六种方法对数据的填充
人工智能·python·机器学习·分类·数据挖掘·sklearn·矿物分类
大模型真好玩1 小时前
一文深度解析OpenAI近期发布系列大模型:意欲一统大模型江湖?
人工智能·python·mcp
双翌视觉1 小时前
工业视觉检测中的常见的四种打光方式
人工智能·计算机视觉·视觉检测
念念01071 小时前
基于MATLAB多智能体强化学习的出租车资源配置优化系统设计与实现
大数据·人工智能·matlab
一车小面包1 小时前
机器学习--决策树
决策树·机器学习
nonono2 小时前
深度学习——常见的神经网络
人工智能·深度学习·神经网络