神经网络章节感知机部分 空间中任意一点到线性分割超平面的距离公式 解释说明

公式 8-3 的内容如下:
1 ∣ ∣ w ∣ ∣ ∣ w ⋅ x 0 + b ∣ \frac{1}{||w||} |w \cdot x_0 + b| ∣∣w∣∣1∣w⋅x0+b∣

公式 8-3 的详细解释:

这个公式表示某个点 x 0 x_0 x0 到一个超平面的距离,其中:

  • w w w 是感知机的权重向量。
  • b b b 是感知机的偏置项(或阈值)。
  • x 0 x_0 x0 是你要计算到超平面距离的点。
  • ∣ ∣ w ∣ ∣ ||w|| ∣∣w∣∣ 表示权重向量 w w w 的 L2 范数,即 w w w 的长度(欧几里得长度)。
  • w ⋅ x 0 w \cdot x_0 w⋅x0 表示向量 w w w 和点 x 0 x_0 x0 的点积。

公式的形式是通过点积 w ⋅ x 0 + b w \cdot x_0 + b w⋅x0+b 表示 x 0 x_0 x0 点相对于超平面的位置,然后通过除以权重向量 w w w 的 L2 范数来标准化,这样得到的就是该点到超平面的垂直距离

解释步骤:

  1. w ⋅ x 0 + b w \cdot x_0 + b w⋅x0+b

    • 这个表达式表示 x 0 x_0 x0 代入超平面方程 w ⋅ x + b = 0 w \cdot x + b = 0 w⋅x+b=0 后的值。它可以看作 x 0 x_0 x0 点相对于超平面的"签名距离"(带正负符号的距离)。如果结果为正,则点 x 0 x_0 x0 在超平面的一侧;如果为负,则在另一侧;如果为零,则点 x 0 x_0 x0 刚好位于超平面上。
  2. ∣ ∣ w ∣ ∣ ||w|| ∣∣w∣∣

    • ∣ ∣ w ∣ ∣ ||w|| ∣∣w∣∣ 是权重向量 w w w 的 L2 范数,即权重向量的欧几里得长度。它用于将点积结果进行标准化,使得我们得到的距离是点到超平面的垂直距离,而不是简单的点积结果。
  3. 1 ∣ ∣ w ∣ ∣ \frac{1}{||w||} ∣∣w∣∣1

    • 通过将点积结果除以 ∣ ∣ w ∣ ∣ ||w|| ∣∣w∣∣,我们消除了方向的影响,得到的是点 x 0 x_0 x0 到超平面的最短距离 ,而不是简单的欧几里得距离。这确保了无论 w w w 向量的大小如何,计算出的距离都能正确反映点到超平面的真实距离。
  4. ∣ w ⋅ x 0 + b ∣ |w \cdot x_0 + b| ∣w⋅x0+b∣

    • 绝对值符号消除了结果的正负号,使我们关心的只是距离的大小,而不是点位于超平面的哪一侧。

几何解释:

超平面可以看作是 n 维空间中的一个 ( n − 1 ) (n-1) (n−1) 维的分隔线或分隔面。公式 8-3 表示从点 x 0 x_0 x0 垂直到超平面的距离。这个公式给出的距离是经过标准化的,因此它独立于权重 w w w 的规模。

总结:

公式 8-3 给出了任意输入点 x 0 x_0 x0 到由权重向量 w w w 和偏置 b b b 所定义的超平面的垂直距离。这在感知机学习中很重要,因为我们希望通过调整权重和偏置,将误分类样本的距离缩短,从而将它们正确分类到超平面的一侧。

相关推荐
2501_938931255 分钟前
解构AI营销获客工具的四大智能中枢与价值逻辑
人工智能·机器学习·自动驾驶
Liquad Li11 分钟前
汽车配件 AI 系统:重构汽车配件管理与多语言内容生成新范式
人工智能
小白狮ww11 分钟前
VASP 教程:使用 VASP 进行机器学习力场训练
人工智能·深度学习·机器学习·大模型·分子动力学·计算机程序·vasp
ayingmeizi16312 分钟前
重构增长:生成式AI如何将CRM打造为企业的销售大脑
人工智能·重构
TG:@yunlaoda360 云老大25 分钟前
火山引擎数智平台VeDI重磅发布“AI助手”:以大模型驱动数据飞轮,赋能非技术人员高效“看数、用数”
人工智能·信息可视化·火山引擎
golang学习记35 分钟前
ZCF:一键配齐 Claude Code 开发环境的零配置利器
人工智能
禅与计算机程序设计艺术37 分钟前
实现一个原生版本的 LangGraph 的 `create_agent` 功能,使用 Python 和通用的 LLM MaaS API
人工智能
恒点虚拟仿真1 小时前
智能制造专业虚拟仿真实训平台:AI赋能个性化学习,提高实践技能
人工智能·智能制造·ai教学·ai+虚拟仿真·虚拟仿真实训平台·虚拟仿真平台·虚拟仿真教学平台
泰迪智能科技1 小时前
分享|智能决策,精准增长:企业数据挖掘关键策略与应用全景
人工智能·数据挖掘
番茄撒旦在上1 小时前
2.每日机器学习——张量(Tensors)
人工智能·机器学习