神经网络章节感知机部分 空间中任意一点到线性分割超平面的距离公式 解释说明

公式 8-3 的内容如下:
1 ∣ ∣ w ∣ ∣ ∣ w ⋅ x 0 + b ∣ \frac{1}{||w||} |w \cdot x_0 + b| ∣∣w∣∣1∣w⋅x0+b∣

公式 8-3 的详细解释:

这个公式表示某个点 x 0 x_0 x0 到一个超平面的距离,其中:

  • w w w 是感知机的权重向量。
  • b b b 是感知机的偏置项(或阈值)。
  • x 0 x_0 x0 是你要计算到超平面距离的点。
  • ∣ ∣ w ∣ ∣ ||w|| ∣∣w∣∣ 表示权重向量 w w w 的 L2 范数,即 w w w 的长度(欧几里得长度)。
  • w ⋅ x 0 w \cdot x_0 w⋅x0 表示向量 w w w 和点 x 0 x_0 x0 的点积。

公式的形式是通过点积 w ⋅ x 0 + b w \cdot x_0 + b w⋅x0+b 表示 x 0 x_0 x0 点相对于超平面的位置,然后通过除以权重向量 w w w 的 L2 范数来标准化,这样得到的就是该点到超平面的垂直距离

解释步骤:

  1. w ⋅ x 0 + b w \cdot x_0 + b w⋅x0+b

    • 这个表达式表示 x 0 x_0 x0 代入超平面方程 w ⋅ x + b = 0 w \cdot x + b = 0 w⋅x+b=0 后的值。它可以看作 x 0 x_0 x0 点相对于超平面的"签名距离"(带正负符号的距离)。如果结果为正,则点 x 0 x_0 x0 在超平面的一侧;如果为负,则在另一侧;如果为零,则点 x 0 x_0 x0 刚好位于超平面上。
  2. ∣ ∣ w ∣ ∣ ||w|| ∣∣w∣∣

    • ∣ ∣ w ∣ ∣ ||w|| ∣∣w∣∣ 是权重向量 w w w 的 L2 范数,即权重向量的欧几里得长度。它用于将点积结果进行标准化,使得我们得到的距离是点到超平面的垂直距离,而不是简单的点积结果。
  3. 1 ∣ ∣ w ∣ ∣ \frac{1}{||w||} ∣∣w∣∣1

    • 通过将点积结果除以 ∣ ∣ w ∣ ∣ ||w|| ∣∣w∣∣,我们消除了方向的影响,得到的是点 x 0 x_0 x0 到超平面的最短距离 ,而不是简单的欧几里得距离。这确保了无论 w w w 向量的大小如何,计算出的距离都能正确反映点到超平面的真实距离。
  4. ∣ w ⋅ x 0 + b ∣ |w \cdot x_0 + b| ∣w⋅x0+b∣

    • 绝对值符号消除了结果的正负号,使我们关心的只是距离的大小,而不是点位于超平面的哪一侧。

几何解释:

超平面可以看作是 n 维空间中的一个 ( n − 1 ) (n-1) (n−1) 维的分隔线或分隔面。公式 8-3 表示从点 x 0 x_0 x0 垂直到超平面的距离。这个公式给出的距离是经过标准化的,因此它独立于权重 w w w 的规模。

总结:

公式 8-3 给出了任意输入点 x 0 x_0 x0 到由权重向量 w w w 和偏置 b b b 所定义的超平面的垂直距离。这在感知机学习中很重要,因为我们希望通过调整权重和偏置,将误分类样本的距离缩短,从而将它们正确分类到超平面的一侧。

相关推荐
Kenneth風车17 分钟前
【机器学习(九)】分类和回归任务-多层感知机(Multilayer Perceptron,MLP)算法-Sentosa_DSML社区版 (1)111
算法·机器学习·分类
盼小辉丶19 分钟前
TensorFlow深度学习实战(2)——使用TensorFlow构建神经网络
深度学习·神经网络·tensorflow
起名字什么的好难25 分钟前
conda虚拟环境安装pytorch gpu版
人工智能·pytorch·conda
18号房客32 分钟前
计算机视觉-人工智能(AI)入门教程一
人工智能·深度学习·opencv·机器学习·计算机视觉·数据挖掘·语音识别
百家方案34 分钟前
「下载」智慧产业园区-数字孪生建设解决方案:重构产业全景图,打造虚实结合的园区数字化底座
大数据·人工智能·智慧园区·数智化园区
云起无垠40 分钟前
“AI+Security”系列第4期(一)之“洞” 见未来:AI 驱动的漏洞挖掘新范式
人工智能
QQ_7781329741 小时前
基于深度学习的图像超分辨率重建
人工智能·机器学习·超分辨率重建
清 晨1 小时前
Web3 生态全景:创新与发展之路
人工智能·web3·去中心化·智能合约
公众号Codewar原创作者2 小时前
R数据分析:工具变量回归的做法和解释,实例解析
开发语言·人工智能·python
IT古董2 小时前
【漫话机器学习系列】020.正则化强度的倒数C(Inverse of regularization strength)
人工智能·机器学习