学习干货IF=93.6!开发临床预测模型:分步指南

预测患者未来结果对临床实践至关重要,有助于医生做出明智决策。尽管每年发布大量预测模型,但许多研究存在方法学局限,如样本量不足和模型验证不充分,这削弱了模型的实际应用价值。因此,必须深入探讨并改进这些局限性,以提升模型的实用性和可靠性。

没有病例资源,也没有经费支持,小医生该怎么发表论文啊?

别急,教程这不就来了吗

2024年9月3日,The BMJ又发布了论文《Developing clinical prediction models: a step-by-step guide》(《开发临床预测模型:分步指南》)。

本文提供了一份分步指南,旨在帮助研究人员开发和评估临床预测模型。该指南涵盖了定义目标和用户、选择数据源、处理缺失数据、探索替代建模选项以及评估模型性能的最佳实践。通过复发缓解型多发性硬化症的实例,具体展示了这些步骤,同时附有全面的 R 代码供参考。

**题目:**Developing clinical prediction models: a step-by-step guide

**杂志:**The BMJ

**影响因子:**IF=93.6

**中科院分区:**医学一区

**发表时间:**2024年9月

一、术语表

术语表表1总结了所使用的基本概念和术语,便于读者快速理解关键内容。

二、临床预测模型的13个步骤

每年发布的许多预测模型常常存在方法上的缺陷,限制了其内部有效性和适用性。为此,制定了13步指南,帮助医疗保健专业人员和研究人员开发和验证预测模型,避免常见陷阱。

Step 01:确定目标、组建团队、查看文献、开始编写方案

Step 02:选择开发新模型或更新现有模型

Step 03:定义结果衡量标准

Step 04:确定候选预测因子并指定测量方法

候选预测变量

我们应根据文献综述和专家知识确定潜在的预测因子(第1步)。这些因子应使用既定的、可靠的方法进行客观定义和衡量,同时理解支持预测因子与结果关联的生物途径是关键。应优先纳入已证实或怀疑与结果有因果关系的预测因子,以提高模型的泛化性。但不应先验排除与结果没有因果关系的潜在预测因子,因为它们可能仍对模型性能有帮助。我们必须仅包括基线预测因子,即在做出预测时可获得的信息。对连续预测变量进行二分法或分类会减少信息并削弱统计能力,应避免。此外,不应仅根据相关模型性能选择连续结果的类别,而是应在测试多个分类阈值后做出决策。

考虑预测模型的用户

考虑模型的预期用途(在第1步中定义)和数据的可用性至关重要。应明确哪些变量在临床实践中常规测量,哪些在数据库中可用,以及与其测量相关的成本和实际问题,例如侵入性程度。比如,退伍军人老龄化队列研究指数(VACS指数2.0)预测HIV感染者的全因死亡率,但某些预测因子如肝纤维化指数(FIB-4)在许多HIV高发地区的常规实践中不可用。同样,对多发性硬化症预后模型的系统评价发现,75个模型中有44个(59%)包含不太可能在初级保健或标准医院环境中测量的预测因子。

Step 05:收集并检查数据

Step 06:考虑样本大小

简单模型或基于无关协变量的模型在开发数据和新数据中表现不佳,称为欠拟合。相反,过多预测因子的模型在小型数据集中虽表现良好,却无法准确预测新数据。过拟合比欠拟合更常见,因为数据集通常较小,研究者倾向于追求最佳性能。因此,确保数据量足够以开发稳健模型至关重要。

Step 07:处理缺失数据

如步骤5所述,删除具有大量缺失值的预测变量或结果后,我们仍需处理保留数据中的缺失值。仅依靠完整个案(即所有变量数据齐全的参与者)进行模型开发可能会显著减少样本量。为减少在模型开发和评估过程中有价值信息的损失,研究人员应考虑对缺失数据进行插补。

Step 08:拟合预测模型

①注意偏差-方差权衡

②欠拟合与过拟合

Step 09:评估预测模型的性能

①区分度、校准度,不同类型结果预测模型应选择不同的性能测量指标。

②内部验证、内部-外部验证、外部验证(作者呼吁外部验证研究应该与模型开发分开,最好是不同研究人员来做)

Step 10:确定最终模型

在性能接近的模型中选择更简单的模型(奥卡姆剃刀原理,一个有名的机器学习模型选择依据)

例如,当逻辑回归模型的性能与用于区分年轻人1型和2型糖尿病的优化机器学习模型相似时,我们更倾向于选择逻辑回归,因为它更简单、更易于沟通和使用。

Step 11:执行决策曲线分析

Step 12:评估单个预测变量的预测能力

在预测建模中,关键不在于评估单个预测因子的影响,而是优化整体模型的预测性能。尽管识别重要预测因子仍有价值,特别是在评估新生物标志物或可修改因子时,研究人员可选择评估预测变量的预测能力。通过查看广义线性回归模型的估计系数,可以简单评估不同预测因子的影响,但在假设不满足(如共线性)时,这些估计可能不可靠。另一种方法是比较包含和不包含某预测变量的模型,以观察性能变化。更高级的方法如排列重要性和SHAP算法可以提供进一步分析。无论采用何种方法,谨慎解读结果至关重要,因为数据中的关联不一定反映因果关系,需进行深入的因果推理分析以确认因果关联。

Step 13:撰写并发布

三、基础流程图

论文提供了一个分步指南,用于开发和验证临床预测模型(如下图所示)

相关推荐
知识分享小能手4 小时前
React学习教程,从入门到精通, React 属性(Props)语法知识点与案例详解(14)
前端·javascript·vue.js·学习·react.js·vue·react
汇能感知6 小时前
摄像头模块在运动相机中的特殊应用
经验分享·笔记·科技
茯苓gao6 小时前
STM32G4 速度环开环,电流环闭环 IF模式建模
笔记·stm32·单片机·嵌入式硬件·学习
是誰萆微了承諾7 小时前
【golang学习笔记 gin 】1.2 redis 的使用
笔记·学习·golang
DKPT7 小时前
Java内存区域与内存溢出
java·开发语言·jvm·笔记·学习
aaaweiaaaaaa7 小时前
HTML和CSS学习
前端·css·学习·html
看海天一色听风起雨落8 小时前
Python学习之装饰器
开发语言·python·学习
speop10 小时前
llm的一点学习笔记
笔记·学习
运维小雅10 小时前
哪些因素会直观地影响到产品销量?
经验分享·笔记·媒体
非凡ghost10 小时前
FxSound:提升音频体验,让音乐更动听
前端·学习·音视频·生活·软件需求