动手学深度学习60 机器翻译与数据集

1. 机器翻译与数据集

py 复制代码
import os
import torch
from d2l import torch as d2l

#@save
d2l.DATA_HUB['fra-eng'] = (d2l.DATA_URL + 'fra-eng.zip',
                           '94646ad1522d915e7b0f9296181140edcf86a4f5')

#@save
def read_data_nmt():
    """载入"英语-法语"数据集"""
    data_dir = d2l.download_extract('fra-eng')
    with open(os.path.join(data_dir, 'fra.txt'), 'r',
             encoding='utf-8') as f:
        return f.read()

raw_text = read_data_nmt()
print(raw_text[:75])

#@save
# 标点符号也要翻译
def preprocess_nmt(text):
    """预处理"英语-法语"数据集"""
    def no_space(char, prev_char):
        return char in set(',.!?') and prev_char != ' '

    # 使用空格替换不间断空格
    # 使用小写字母替换大写字母
    text = text.replace('\u202f', ' ').replace('\xa0', ' ').lower()
    # 在单词和标点符号之间插入空格
    out = [' ' + char if i > 0 and no_space(char, text[i - 1]) else char
           for i, char in enumerate(text)]
    return ''.join(out)

text = preprocess_nmt(raw_text)
print(text[:80])

#@save
def tokenize_nmt(text, num_examples=None):
    """词元化"英语-法语"数据数据集"""
    source, target = [], []
    for i, line in enumerate(text.split('\n')):
        if num_examples and i > num_examples:
            break
        parts = line.split('\t')
        if len(parts) == 2:
            source.append(parts[0].split(' '))
            target.append(parts[1].split(' '))
    return source, target
#  英语   法语
source, target = tokenize_nmt(text)
source[:6], target[:6]

#@save
def show_list_len_pair_hist(legend, xlabel, ylabel, xlist, ylist):
    """绘制列表长度对的直方图"""
    d2l.set_figsize()
    _, _, patches = d2l.plt.hist(
        [[len(l) for l in xlist], [len(l) for l in ylist]])
    d2l.plt.xlabel(xlabel)
    d2l.plt.ylabel(ylabel)
    for patch in patches[1].patches:
        patch.set_hatch('/')
    d2l.plt.legend(legend)

show_list_len_pair_hist(['source', 'target'], '# tokens per sequence',
                        'count', source, target);

# <pad> 填充  <bos> 句子开始  <eos> 句子结束
# 词小于等于2 就不要了。
src_vocab = d2l.Vocab(source, min_freq=2,
                      reserved_tokens=['<pad>', '<bos>', '<eos>'])
len(src_vocab)

# 怎么让句子变成一样的长度  填充或者删除。
#@save
def truncate_pad(line, num_steps, padding_token):
    """截断或填充文本序列"""
    if len(line) > num_steps:
        return line[:num_steps]  # 截断
    return line + [padding_token] * (num_steps - len(line))  # 填充

truncate_pad(src_vocab[source[0]], 10, src_vocab['<pad>'])

#@save
# valid_len 告诉句子实际长度是多少【记录原始数据多长】 不管填充的内容,计算时不要学pad
def build_array_nmt(lines, vocab, num_steps):
    """将机器翻译的文本序列转换成小批量"""
    lines = [vocab[l] for l in lines]
    lines = [l + [vocab['<eos>']] for l in lines]
    array = torch.tensor([truncate_pad(
        l, num_steps, vocab['<pad>']) for l in lines])
    valid_len = (array != vocab['<pad>']).type(torch.int32).sum(1)
    return array, valid_len

#@save
def load_data_nmt(batch_size, num_steps, num_examples=600):
    """返回翻译数据集的迭代器和词表"""
    text = preprocess_nmt(read_data_nmt())
    source, target = tokenize_nmt(text, num_examples)
    src_vocab = d2l.Vocab(source, min_freq=2,
                          reserved_tokens=['<pad>', '<bos>', '<eos>'])
    tgt_vocab = d2l.Vocab(target, min_freq=2,
                          reserved_tokens=['<pad>', '<bos>', '<eos>'])
    src_array, src_valid_len = build_array_nmt(source, src_vocab, num_steps)
    tgt_array, tgt_valid_len = build_array_nmt(target, tgt_vocab, num_steps)
    data_arrays = (src_array, src_valid_len, tgt_array, tgt_valid_len)
    data_iter = d2l.load_array(data_arrays, batch_size)
    return data_iter, src_vocab, tgt_vocab

train_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8)
for X, X_valid_len, Y, Y_valid_len in train_iter:
    print('X:', X.type(torch.int32))
    print('X的有效长度:', X_valid_len)
    print('Y:', Y.type(torch.int32))
    print('Y的有效长度:', Y_valid_len)
    break
相关推荐
KuaFuAI5 分钟前
微软推出的AI无代码编程微应用平台GitHub Spark和国产AI原生无代码工具CodeFlying比到底咋样?
人工智能·github·aigc·ai编程·codeflying·github spark·自然语言开发软件
Make_magic15 分钟前
Git学习教程(更新中)
大数据·人工智能·git·elasticsearch·计算机视觉
shelly聊AI19 分钟前
语音识别原理:AI 是如何听懂人类声音的
人工智能·语音识别
源于花海22 分钟前
论文学习(四) | 基于数据驱动的锂离子电池健康状态估计和剩余使用寿命预测
论文阅读·人工智能·学习·论文笔记
雷龙发展:Leah23 分钟前
离线语音识别自定义功能怎么用?
人工智能·音频·语音识别·信号处理·模块测试
4v1d26 分钟前
边缘计算的学习
人工智能·学习·边缘计算
风之馨技术录30 分钟前
智谱AI清影升级:引领AI视频进入音效新时代
人工智能·音视频
sniper_fandc40 分钟前
深度学习基础—Seq2Seq模型
人工智能·深度学习
goomind43 分钟前
深度学习模型评价指标介绍
人工智能·python·深度学习·计算机视觉
youcans_44 分钟前
【微软报告:多模态基础模型】(2)视觉理解
人工智能·计算机视觉·大语言模型·多模态·视觉理解