Spark练习json文件-统计问答数据

目录

题目

准备数据

分析数据

实现数据

总结


题目

  1. 计算不同分类的问题数量
  2. 统计问题中的热搜词,并获取top10的热搜词

准备数据

将数据上传到hdfs上

分析数据

读取数据

python 复制代码
from pyspark import SparkContext
import json
import jieba

sc = SparkContext()

# 读取hdfs数据
rdd = sc.textFile('hdfs://node1:8020/data/baike_qa_valid.json')

对每行的json字符串转换为字典

python 复制代码
# 对每行的json字符串转为字典
rdd_dict = rdd.map(lambda x:json.loads(x))
print(rdd_dict.take(1))

第一问:计算不同分类的问题数量

python 复制代码
# 计算不同分类的问题数量
rdd_kv = rdd_dict.map(lambda x:(x['category'],1)).reduceByKey(lambda x,y:x+y)

res3 = rdd_kv.collect()
print(res3)

第二问:统计问题中的热搜词,并获取top10的热搜词

1-对title中的数据分词

python 复制代码
# # 1-对title中的数据分词
rdd_cut = rdd_dict.map(lambda x:list(jieba.cut(x['title'])))
print(rdd_cut.take(10))

2-将这些数据合并成一个单一的序列

python 复制代码
# # 2-将这些数据合并成一个单一的序列
rdd_flatmap = rdd_cut.flatMap(lambda x:x)
print(rdd_flatmap.take(20))

3-只保留长度大于1的单词

python 复制代码
# # # 3-筛选条件,只保留长度大于1的单词
rdd_filter = rdd_flatmap.filter(lambda x:len(x)>1)
print(rdd_filter.take(10))

4-将每个单词转换成键值对

python 复制代码
# # 4-将每个单词转换成键值对
rdd_map = rdd_filter.map(lambda x:(x,1))
print(rdd_map.take(10))

5-对键值对进行聚合

python 复制代码
# # 5-对键值对进行聚合
rdd_reduce = rdd_map.reduceByKey(lambda x,y:x+y)
print(rdd_reduce.take(10))

6-对最后的数据进行排名,取出top10

python 复制代码
# # 6-对数据进行排序
rdd_sort = rdd_reduce.sortBy(lambda x:x[1],ascending=False)
print(rdd_sort.take(10))

实现数据

第一种:一步一步分开写

python 复制代码
from pyspark import SparkContext
import json
import jieba

sc = SparkContext()

# 读取hdfs数据
rdd = sc.textFile('hdfs://node1:8020/data/baike_qa_valid.json')

# 对每行的json字符串转为字典
rdd_dict = rdd.map(lambda x:json.loads(x))

# 计算不同分类的问题数量
rdd_kv = rdd_dict.map(lambda x:(x['category'],1)).reduceByKey(lambda x,y:x+y)


# # 对title中的数据分词
# # 1-对title中的数据分词
rdd_cut = rdd_dict.map(lambda x:list(jieba.cut(x['title'])))
# print(rdd_cut.take(10))
# # 2-将这些数据合并成一个单一的序列
rdd_flatmap = rdd_cut.flatMap(lambda x:x)
# print(rdd_flatmap.take(20))
# # # 3-筛选条件,只保留长度大于1的单词
rdd_filter = rdd_flatmap.filter(lambda x:len(x)>1)
# print(rdd_filter.take(10))
# # 4-将每个单词转换成键值对
rdd_map = rdd_filter.map(lambda x:(x,1))
# print(rdd_map.take(10))
# # 5-对键值对进行聚合
rdd_reduce = rdd_map.reduceByKey(lambda x,y:x+y)
# print(rdd_reduce.take(10))
# # 6-对数据进行排序
rdd_sort = rdd_reduce.sortBy(lambda x:x[1],ascending=False)
print(rdd_sort.take(10))

第二种:通过链式操作

python 复制代码
from pyspark import SparkContext
import json
import jieba

sc = SparkContext()

# 读取hdfs数据
rdd = sc.textFile('hdfs://node1:8020/data/baike_qa_valid.json')

# 对每行的json字符串转为字典
rdd_dict = rdd.map(lambda x:json.loads(x))

# 计算不同分类的问题数量
rdd_kv = rdd_dict.map(lambda x:(x['category'],1)).reduceByKey(lambda x,y:x+y)


# 统计问题中的热搜词,并获取的热搜词
# 对title中的数据分词
rdd_jieba = (rdd_dict.
             map(lambda x:list(jieba.cut(x['title']))).
             flatMap(lambda x:x).
             filter(lambda x:len(x)>1).
             map(lambda x:(x,1)).
             reduceByKey(lambda x,y:x+y).
             sortBy(lambda x:x[1],ascending=False))
#
# # 查看读取的数据

res3 = rdd_kv.collect()
print(res3)

res4 = rdd_jieba.take(10)
print(res4)

总结

因为数据量过大,所以使用collect()将会出现下面错误,可以使用take(),只查看前几条

相关推荐
GIS数据转换器13 分钟前
基于AI的低空数联无人机智慧巡查平台
大数据·人工智能·机器学习·无人机·宠物
跨境摸鱼14 分钟前
用“内容+投放+运营”打出增长曲线
大数据·安全·跨境电商·亚马逊·内容营销
ApacheSeaTunnel1 小时前
Apache SeaTunnel Zeta、Flink、Spark 怎么选?底层原理 + 实战对比一次讲透
大数据·flink·spark·开源·数据集成·seatunnel·数据同步
电商API&Tina1 小时前
乐天平台 (Rakuten) 数据采集指南
大数据·开发语言·数据库·oracle·json
无忧智库1 小时前
全域未来乡村数字化建设与共富运营规划方案深度解读:打造数字乡村“中国样本“的完整方法论(PPT)
大数据·人工智能
紧固件研究社1 小时前
2026第十六届上海紧固件专业展|洞察紧固件升级新方向
大数据·人工智能·制造·紧固件·上海紧固件展·上海紧固件专业展
代码匠心1 小时前
从零开始学Flink:状态管理与容错机制
java·大数据·后端·flink·大数据处理
Elastic 中国社区官方博客1 小时前
金融服务公司如何大规模构建上下文智能
大数据·人工智能·elasticsearch·搜索引擎·ai·金融·全文检索
梵得儿SHI1 小时前
深度拆解 Google Personal Intelligence:下一代个性化 AI 的技术架构、隐私保障与未来愿景
大数据·人工智能·agi·pi·跨产品数据整合
策知道2 小时前
2026年北京政府工作报告产业指标深度解析
大数据·数据库·人工智能·搜索引擎·政务