深度学习之卷积CONV2D

文章目录

1.学习目的

卷积听起来简单,事实上不简单,需要多加练习

2.填充与步幅

在前面的例子 图6.2.1中,输入的高度和宽度都为3,卷积核的高度和宽度都为2,生成的输出表征的维数为22。 正如我们在 6.2节中所概括的那样,假设输入形状为nh,nw,卷积核形状为khkw,那么输出形状将是(nh-kh+1)*(nw-kw+1)。 因此,卷积的输出形状取决于输入形状和卷积核的形状。

还有什么因素会影响输出的大小呢?本节我们将介绍填充(padding)和步幅(stride)。假设以下情景: 有时,在应用了连续的卷积之后,我们最终得到的输出远小于输入大小。这是由于卷积核的宽度和高度通常大于1所导致的。比如,一个

240240像素的图像,经过10层55的卷积后,将减少到200*200像素。如此一来,原始图像的边界丢失了许多有用信息。而填充是解决此问题最有效的方法; 有时,我们可能希望大幅降低图像的宽度和高度。例如,如果我们发现原始的输入分辨率十分冗余。步幅则可以在这类情况下提供帮助。

2.1填充

如上所述,在应用多层卷积时,我们常常丢失边缘像素。 由于我们通常使用小卷积核,因此对于任何单个卷积,我们可能只会丢失几个像素。 但随着我们应用许多连续卷积层,累积丢失的像素数就多了。 解决这个问题的简单方法即为填充(padding):在输入图像的边界填充元素(通常填充元素是0

)。 例如,在 图6.3.1中,我们将33输入填充到5 5

,那么它的输出就增加为4*4。阴影部分是第一个输出元素以及用于输出计算的输入和核张量元素: 0

图6.3.1 带填充的二维互相关

python 复制代码
import torch
from torch import nn


# 为了方便起见,我们定义了一个计算卷积层的函数。
# 此函数初始化卷积层权重,并对输入和输出提高和缩减相应的维数
def comp_conv2d(conv2d, X):
    # 这里的(1,1)表示批量大小和通道数都是1
    X = X.reshape((1, 1) + X.shape)
    Y = conv2d(X)
    # 省略前两个维度:批量大小和通道
    return Y.reshape(Y.shape[2:])

# 请注意,这里每边都填充了1行或1列,因此总共添加了2行或2列
conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1)
X = torch.rand(size=(8, 8))
comp_conv2d(conv2d, X).shape

当卷积核的高度和宽度不同时,我们可以填充不同的高度和宽度,使输出和输入具有相同的高度和宽度。在如下示例中,我们使用高度为5,宽度为3的卷积核,高度和宽度两边的填充分别为2和1。

python 复制代码
conv2d = nn.Conv2d(1, 1, kernel_size=(5, 3), padding=(2, 1))
comp_conv2d(conv2d, X).shape

torch.Size([8,8])

2.2 步幅

3.总结

相关推荐
DogDaoDao7 分钟前
神经网络稀疏化设计构架方法和原理深度解析
人工智能·pytorch·深度学习·神经网络·大模型·剪枝·网络稀疏
西猫雷婶1 小时前
pytorch基本运算-Python控制流梯度运算
人工智能·pytorch·python·深度学习·神经网络·机器学习
说私域1 小时前
新零售第一阶段传统零售商的困境突破与二次增长路径:基于定制开发开源AI智能名片S2B2C商城小程序的实践探索
人工智能·开源·零售
寒月霜华2 小时前
机器学习-模型验证
人工智能·深度学习·机器学习
救救孩子把2 小时前
3-机器学习与大模型开发数学教程-第0章 预备知识-0-3 函数初步(多项式、指数、对数、三角函数、反函数)
人工智能·数学·机器学习
CareyWYR2 小时前
每周AI论文速递(250908-250912)
人工智能
张晓~183399481212 小时前
短视频矩阵源码-视频剪辑+AI智能体开发接入技术分享
c语言·c++·人工智能·矩阵·c#·php·音视频
deephub3 小时前
量子机器学习入门:三种数据编码方法对比与应用
人工智能·机器学习·量子计算·数据编码·量子机器学习
AI 嗯啦3 小时前
计算机视觉----opencv实战----指纹识别的案例
人工智能·opencv·计算机视觉
max5006003 小时前
基于多元线性回归、随机森林与神经网络的农作物元素含量预测及SHAP贡献量分析
人工智能·python·深度学习·神经网络·随机森林·线性回归·transformer