绘图技巧 | 矩形树状图(Treemap)绘图技巧分享~~

今天这篇推文,小编还是像往常一样交给大家绘图技巧,今天的主角就是-*树形矩阵图(Treemap)*。绘制树形图使用R或者Python都是可以绘制的,今天我们还是使用R进行绘制(Python绘制结果为交互式,后面统一介绍相应的库)。在R中有专门的包-treemapify包进行绘制。今天内容主要如下:

  • 树形矩阵图(Treemap)简介

  • 树形矩阵图(Treemap)R实例演示

  • 更多详细的数据可视化教程,可订阅我们的店铺课程:

树形矩阵图(Treemap)简介

在数据可视化分析中,在面对大量分层结构(树状结构) 的数据时,要想准确的使用图表去展示时,树形图(Treemap)就排上用场了。在树形图中,图表被分为若干个大小的矩形,矩形的大小和顺序取决于数据变量,而变量间则使用不同颜色表示。

绘制树形图的所需数据特点如下:

  • 数据呈部分到整体的关系;

  • 数据使分层结构的。

树形矩阵图(Treemap)R实例演示

R-treemapify包可以很好的绘制树形矩阵图(Treemap),其官网为:*https://wilkox.org/treemapify/index.html*,其主要提供

  • geom_treemap()

  • geom_treemap_text()

  • geom_treemap_subgroup_border()

  • geom_treemap_subgroup_text()

等绘图函数进行树形矩阵图的元素的添加,由于是ggplot2的拓展包,较容易理解,小伙伴们可直接参看官网接好和例子即可。下面我们通过一个实例演示R-treemapify包是如何绘制树形矩阵图的。

官网样例美化:

复制代码
ggplot(G20, aes(area = gdp_mil_usd, fill = as.factor(hdi), label = country,
                subgroup = region)) +
  geom_treemap() +
  geom_treemap_subgroup_border() +
  geom_treemap_subgroup_text(place = "centre", grow = T, alpha = 0.5, colour =
                             "black", fontface = "italic", min.size = 0) +
  geom_treemap_text(colour = "white", place = "topleft", reflow = T) +
  scale_fill_manual(values = lacroix_palette("Pamplemousse", n = 19, type = "continuous"),name="")+
    labs(
    title = "Example of <span style='color:#D20F26'>treemapify::geom_treemap function</span>",
    subtitle = "processed charts with <span style='color:#1A73E8'>geom_treemap()</span>",
    caption = "Visualization by <span style='color:#DD6449'>DataCharm</span>") +
    hrbrthemes::theme_ipsum(base_family = "Roboto Condensed") +
    theme(
        plot.title = element_markdown(hjust = 0.5,vjust = .5,color = "black",
                                      size = 25, margin = margin(t = 1, b = 12)),
        plot.subtitle = element_markdown(hjust = 0,vjust = .5,size=18),
        plot.caption = element_markdown(face = 'bold',size = 12),

        panel.background = element_rect(fill="#a3c9c7"),
        panel.border = element_rect(fill = NA,colour = "#a3c9c7"),
        plot.background = element_rect(fill="#a3c9c7",colour = "#a3c9c7"),
        # 修改图例参数
        legend.position = 'none',
        legend.direction = "horizontal",
        legend.spacing.x = unit(.3,"cm"),
        legend.key.height = unit(1, 'lines'),
        legend.key.width = unit(1.4, 'lines'),
        legend.text = element_text(size = 15,margin = margin(r = .5, unit = 'cm'))
  ) +
  guides(fill=guide_legend(nrow=3,byrow=TRUE,reverse = TRUE,title=NULL))

可视化结果如下:

Example01 of treemapify

实例演示

复制代码
library(tidyverse)
library(ggtext)
library(hrbrthemes)
library(LaCroixColoR)
library(treemapify)

proglangs <- readr::read_csv("proglanguages.csv")
ggplot(proglangs, aes(area=value, fill=parent, subgroup=parent)) +
    geom_treemap() +
    geom_treemap_subgroup_border(color="gray40") +
    geom_treemap_text(aes(label=id),fontface = "italic", colour = "black", place = "centre",
                      grow = TRUE) +
     geom_treemap_subgroup_text(color="white",fontface="bold.italic",place = "centre",
                                min.size = 0,alpha=.7,grow = TRUE)+

    scale_fill_manual(values = lacroix_palette(type = "paired"),name="")+

    labs(
    title = "Example of <span style='color:#D20F26'>treemapify::geom_treemap function</span>",
    subtitle = "processed charts with <span style='color:#1A73E8'>geom_treemap()</span>",
    caption = "Visualization by <span style='color:#DD6449'>DataCharm</span>") +
    hrbrthemes::theme_ipsum(base_family = "Roboto Condensed") +
    theme(
        plot.title = element_markdown(hjust = 0.5,vjust = .5,color = "black",
                                      size = 25, margin = margin(t = 1, b = 12)),
        plot.subtitle = element_markdown(hjust = 0,vjust = .5,size=18),
        plot.caption = element_markdown(face = 'bold',size = 12),

        panel.background = element_rect(fill="#a3c9c7"),
        panel.border = element_rect(fill = NA,colour = "#a3c9c7"),
        plot.background = element_rect(fill="#a3c9c7",colour = "#a3c9c7"),
        # 修改图例参数
        legend.position = 'bottom',
        legend.direction = "horizontal",
        #legend.spacing.y = unit(.5,"cm"),
        legend.spacing.x = unit(.3,"cm"),
        #legend.key.size = unit(1, 'lines'),
        legend.key.height = unit(1, 'lines'),
        legend.key.width = unit(1.4, 'lines'),
        legend.text = element_text(size = 15,margin = margin(r = .5, unit = 'cm'))
  ) +
  guides(fill=guide_legend(nrow=1,byrow=TRUE,reverse = TRUE,title=NULL))

可视化结果如下:

example of treemapify test

好了,今天的可视化教程比较简单,大家可下载数据进行练习哈,或者直接使用官网提供的数据进行练习哈~~

总结

今天的推文小编给大家介绍了一个快速绘制树形矩阵图的方法,具体的绘图函数也是很好理解的,这里就不再赘述,希望小伙伴们可以多练习哈~~

相关推荐
RestCloud1 小时前
数据传输中的三大难题,ETL 平台是如何解决的?
数据分析·api
源猿人2 天前
企业级文件浏览系统的Vue实现:架构设计与最佳实践
前端·javascript·数据可视化
IT毕设梦工厂3 天前
大数据毕业设计选题推荐-基于大数据的客户购物订单数据分析与可视化系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·数据分析·spark·毕业设计·源码·bigdata
大数据CLUB3 天前
基于spark的澳洲光伏发电站选址预测
大数据·hadoop·分布式·数据分析·spark·数据开发
计算机编程小央姐3 天前
跟上大数据时代步伐:食物营养数据可视化分析系统技术前沿解析
大数据·hadoop·信息可视化·spark·django·课程设计·食物
智数研析社3 天前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗
qingyunliushuiyu3 天前
BI数据可视化:驱动数据价值释放的关键引擎
数据挖掘·数据分析·数据分析系统·数据分析平台·bi数据可视化
CodeCraft Studio3 天前
【案例分享】TeeChart 助力 Softdrill 提升油气钻井数据可视化能力
信息可视化·数据可视化·teechart·油气钻井·石油勘探数据·测井数据
招风的黑耳3 天前
赋能高效设计:12套中后台管理信息系统通用原型框架
信息可视化·axure后台模板·原型模板
程思扬3 天前
利用JSONCrack与cpolar提升数据可视化及跨团队协作效率
网络·人工智能·经验分享·docker·信息可视化·容器·架构