绘图技巧 | 矩形树状图(Treemap)绘图技巧分享~~

今天这篇推文,小编还是像往常一样交给大家绘图技巧,今天的主角就是-*树形矩阵图(Treemap)*。绘制树形图使用R或者Python都是可以绘制的,今天我们还是使用R进行绘制(Python绘制结果为交互式,后面统一介绍相应的库)。在R中有专门的包-treemapify包进行绘制。今天内容主要如下:

  • 树形矩阵图(Treemap)简介

  • 树形矩阵图(Treemap)R实例演示

  • 更多详细的数据可视化教程,可订阅我们的店铺课程:

树形矩阵图(Treemap)简介

在数据可视化分析中,在面对大量分层结构(树状结构) 的数据时,要想准确的使用图表去展示时,树形图(Treemap)就排上用场了。在树形图中,图表被分为若干个大小的矩形,矩形的大小和顺序取决于数据变量,而变量间则使用不同颜色表示。

绘制树形图的所需数据特点如下:

  • 数据呈部分到整体的关系;

  • 数据使分层结构的。

树形矩阵图(Treemap)R实例演示

R-treemapify包可以很好的绘制树形矩阵图(Treemap),其官网为:*https://wilkox.org/treemapify/index.html*,其主要提供

  • geom_treemap()

  • geom_treemap_text()

  • geom_treemap_subgroup_border()

  • geom_treemap_subgroup_text()

等绘图函数进行树形矩阵图的元素的添加,由于是ggplot2的拓展包,较容易理解,小伙伴们可直接参看官网接好和例子即可。下面我们通过一个实例演示R-treemapify包是如何绘制树形矩阵图的。

官网样例美化:

ggplot(G20, aes(area = gdp_mil_usd, fill = as.factor(hdi), label = country,
                subgroup = region)) +
  geom_treemap() +
  geom_treemap_subgroup_border() +
  geom_treemap_subgroup_text(place = "centre", grow = T, alpha = 0.5, colour =
                             "black", fontface = "italic", min.size = 0) +
  geom_treemap_text(colour = "white", place = "topleft", reflow = T) +
  scale_fill_manual(values = lacroix_palette("Pamplemousse", n = 19, type = "continuous"),name="")+
    labs(
    title = "Example of <span style='color:#D20F26'>treemapify::geom_treemap function</span>",
    subtitle = "processed charts with <span style='color:#1A73E8'>geom_treemap()</span>",
    caption = "Visualization by <span style='color:#DD6449'>DataCharm</span>") +
    hrbrthemes::theme_ipsum(base_family = "Roboto Condensed") +
    theme(
        plot.title = element_markdown(hjust = 0.5,vjust = .5,color = "black",
                                      size = 25, margin = margin(t = 1, b = 12)),
        plot.subtitle = element_markdown(hjust = 0,vjust = .5,size=18),
        plot.caption = element_markdown(face = 'bold',size = 12),

        panel.background = element_rect(fill="#a3c9c7"),
        panel.border = element_rect(fill = NA,colour = "#a3c9c7"),
        plot.background = element_rect(fill="#a3c9c7",colour = "#a3c9c7"),
        # 修改图例参数
        legend.position = 'none',
        legend.direction = "horizontal",
        legend.spacing.x = unit(.3,"cm"),
        legend.key.height = unit(1, 'lines'),
        legend.key.width = unit(1.4, 'lines'),
        legend.text = element_text(size = 15,margin = margin(r = .5, unit = 'cm'))
  ) +
  guides(fill=guide_legend(nrow=3,byrow=TRUE,reverse = TRUE,title=NULL))

可视化结果如下:

Example01 of treemapify

实例演示

library(tidyverse)
library(ggtext)
library(hrbrthemes)
library(LaCroixColoR)
library(treemapify)

proglangs <- readr::read_csv("proglanguages.csv")
ggplot(proglangs, aes(area=value, fill=parent, subgroup=parent)) +
    geom_treemap() +
    geom_treemap_subgroup_border(color="gray40") +
    geom_treemap_text(aes(label=id),fontface = "italic", colour = "black", place = "centre",
                      grow = TRUE) +
     geom_treemap_subgroup_text(color="white",fontface="bold.italic",place = "centre",
                                min.size = 0,alpha=.7,grow = TRUE)+

    scale_fill_manual(values = lacroix_palette(type = "paired"),name="")+

    labs(
    title = "Example of <span style='color:#D20F26'>treemapify::geom_treemap function</span>",
    subtitle = "processed charts with <span style='color:#1A73E8'>geom_treemap()</span>",
    caption = "Visualization by <span style='color:#DD6449'>DataCharm</span>") +
    hrbrthemes::theme_ipsum(base_family = "Roboto Condensed") +
    theme(
        plot.title = element_markdown(hjust = 0.5,vjust = .5,color = "black",
                                      size = 25, margin = margin(t = 1, b = 12)),
        plot.subtitle = element_markdown(hjust = 0,vjust = .5,size=18),
        plot.caption = element_markdown(face = 'bold',size = 12),

        panel.background = element_rect(fill="#a3c9c7"),
        panel.border = element_rect(fill = NA,colour = "#a3c9c7"),
        plot.background = element_rect(fill="#a3c9c7",colour = "#a3c9c7"),
        # 修改图例参数
        legend.position = 'bottom',
        legend.direction = "horizontal",
        #legend.spacing.y = unit(.5,"cm"),
        legend.spacing.x = unit(.3,"cm"),
        #legend.key.size = unit(1, 'lines'),
        legend.key.height = unit(1, 'lines'),
        legend.key.width = unit(1.4, 'lines'),
        legend.text = element_text(size = 15,margin = margin(r = .5, unit = 'cm'))
  ) +
  guides(fill=guide_legend(nrow=1,byrow=TRUE,reverse = TRUE,title=NULL))

可视化结果如下:

example of treemapify test

好了,今天的可视化教程比较简单,大家可下载数据进行练习哈,或者直接使用官网提供的数据进行练习哈~~

总结

今天的推文小编给大家介绍了一个快速绘制树形矩阵图的方法,具体的绘图函数也是很好理解的,这里就不再赘述,希望小伙伴们可以多练习哈~~

相关推荐
数模竞赛Paid answer12 分钟前
2023年MathorCup数学建模B题城市轨道交通列车时刻表优化问题解题全过程文档加程序
数学建模·数据分析·mathorcup
Py小趴1 小时前
Python自学之Colormaps指南
开发语言·python·数据可视化
晒足以百八十1 小时前
基于Python 和 pyecharts 制作招聘数据可视化分析大屏
开发语言·python·信息可视化
Watermelo6171 小时前
通过MongoDB Atlas 实现语义搜索与 RAG——迈向AI的搜索机制
人工智能·深度学习·神经网络·mongodb·机器学习·自然语言处理·数据挖掘
孤客网络科技工作室1 小时前
Python Plotly 库使用教程
python·信息可视化·plotly
悟解了1 小时前
《数据可视化技术》上机报告
python·信息可视化·数据分析
zqzgng4 小时前
Python 数据可视化pilot
开发语言·python·信息可视化
天桥下的卖艺者4 小时前
R语言对列线图评分进行危险分层
r语言·列线图·风险分层
Leo.yuan17 小时前
数据量大Excel卡顿严重?选对报表工具提高10倍效率
数据库·数据分析·数据可视化·powerbi
B站计算机毕业设计超人20 小时前
计算机毕业设计Python+大模型农产品价格预测 ARIMA自回归模型 农产品可视化 农产品爬虫 机器学习 深度学习 大数据毕业设计 Django Flask
大数据·爬虫·python·深度学习·机器学习·课程设计·数据可视化