神经网络的基本骨架——nn.Module(torch.nn里的Containers模块里的Module类)

**前置知识:

nn:neural network神经网络

1、torch.nn:与神经网络有关的库

Containers:torch.nn中的一个模块

Module:所有神经网络模型的基础类(Base class for all neural network modules)

注意:任何自定义的模型都应该继承自 nn.Module,并实现 __init__forward 方法,以定义模型的结构和前向传播的逻辑

2、x=torch.tensor(1.0):将输入数据转为张量,因为模型期望收到张量(tensor)类型的输入

因为模型的操作(如加法、矩阵乘法等)都是在张量上进行的

张量可以简单理解为一种多维数组,用于表示数据

  • 标量(0维张量) :一个单一的数字,比如 5

  • 向量(1维张量) :一组数字,比如 [1, 2, 3],可以看作是一条线上的点

  • 矩阵(2维张量):一个数字的表格,比如[ [1, 2], [3, 4] ]

  • 更高维的张量(3维及以上) :想象一下一个立方体,里面有许多数字,比如颜色的RGB值。更高维的张量可以表示更复杂的数据结构,比如视频帧、三维图像等

3、forward方法:如何由input计算得到output

forward和__call__的联系:

forward 是你定义的前向传播逻辑,用于计算输出的方法

__call__ 是一个特殊方法,用于使得模型实例可以像函数一样被调用,并负责调用 forward 以及处理其他一些功能

所以能让实例像函数一样被调用的实际上是__call__而不是forward

**代码:

自定义新模型:

继承nn.Module基类------>重写__init__方法和forward方法

python 复制代码
import torch
from torch import nn

class Xigua(nn.Module):

    def __init__(self):
        super().__init__()

    def forward(self,input):
        output=input+1
        return output

xigua1=Xigua() #先实例化新模型类,才能把它作为工具(一般有__call__方法的都这样做)
x=torch.tensor(1.0)
output=xigua1(x)
print(output)
相关推荐
思通数据2 分钟前
AI智能预警系统:矿山、工厂与油气站安全管理架构浅析
人工智能·深度学习·安全·目标检测·机器学习·计算机视觉·架构
SJLoveIT5 分钟前
神经网络反向传播推导笔记 (整理版)
人工智能·笔记·神经网络
深度学习实战训练营13 分钟前
Monodepth:基于左右一致性的无监督单目深度估计,单目估计的起步-k学长深度学习专栏
人工智能·深度学习
碎碎思18 分钟前
FINN:FPGA AI 推理新范式 —— 定制化、高性能、量化神经网络编译器框架
人工智能·深度学习·神经网络·机器学习·fpga开发
论缘投稿网24 分钟前
论文生成降重会改变内容吗
人工智能·深度学习·aigc
派葛穆26 分钟前
机器人-六轴机械臂的逆运动学
算法·机器学习·机器人
paopao_wu30 分钟前
深度学习4:手写数字识别
人工智能·深度学习
nnerddboy34 分钟前
解决传统特征波段选择的局限性:1.对偶学习
学习·算法·机器学习
CoovallyAIHub42 分钟前
自顶向下 or 自底向上?姿态估计技术是如何进化的?
深度学习·算法·计算机视觉
java1234_小锋1 小时前
Transformer 大语言模型(LLM)基石 - 输出层(Output Layer)详解以及算法实现
深度学习·语言模型·transformer