神经网络的基本骨架——nn.Module(torch.nn里的Containers模块里的Module类)

**前置知识:

nn:neural network神经网络

1、torch.nn:与神经网络有关的库

Containers:torch.nn中的一个模块

Module:所有神经网络模型的基础类(Base class for all neural network modules)

注意:任何自定义的模型都应该继承自 nn.Module,并实现 __init__forward 方法,以定义模型的结构和前向传播的逻辑

2、x=torch.tensor(1.0):将输入数据转为张量,因为模型期望收到张量(tensor)类型的输入

因为模型的操作(如加法、矩阵乘法等)都是在张量上进行的

张量可以简单理解为一种多维数组,用于表示数据

  • 标量(0维张量) :一个单一的数字,比如 5

  • 向量(1维张量) :一组数字,比如 [1, 2, 3],可以看作是一条线上的点

  • 矩阵(2维张量):一个数字的表格,比如[ [1, 2], [3, 4] ]

  • 更高维的张量(3维及以上) :想象一下一个立方体,里面有许多数字,比如颜色的RGB值。更高维的张量可以表示更复杂的数据结构,比如视频帧、三维图像等

3、forward方法:如何由input计算得到output

forward和__call__的联系:

forward 是你定义的前向传播逻辑,用于计算输出的方法

__call__ 是一个特殊方法,用于使得模型实例可以像函数一样被调用,并负责调用 forward 以及处理其他一些功能

所以能让实例像函数一样被调用的实际上是__call__而不是forward

**代码:

自定义新模型:

继承nn.Module基类------>重写__init__方法和forward方法

python 复制代码
import torch
from torch import nn

class Xigua(nn.Module):

    def __init__(self):
        super().__init__()

    def forward(self,input):
        output=input+1
        return output

xigua1=Xigua() #先实例化新模型类,才能把它作为工具(一般有__call__方法的都这样做)
x=torch.tensor(1.0)
output=xigua1(x)
print(output)
相关推荐
ccut 第一混22 分钟前
c# 使用yolov5模型
人工智能·深度学习
七元权1 小时前
论文阅读-FoundationStereo
论文阅读·深度学习·计算机视觉·零样本·基础模型·双目深度估计
智驱力人工智能1 小时前
使用手机检测的智能视觉分析技术与应用 加油站使用手机 玩手机检测
深度学习·算法·目标检测·智能手机·视觉检测·边缘计算
on_pluto_1 小时前
LLaMA: Open and Efficient Foundation Language Models 论文阅读
python·机器学习
姚瑞南1 小时前
【AI 风向标】四种深度学习算法(CNN、RNN、GAN、RL)的通俗解释
人工智能·深度学习·算法
antonytyler1 小时前
认识机器学习
机器学习
渡我白衣2 小时前
深度学习入门(一)——从神经元到损失函数,一步步理解前向传播(上)
人工智能·深度学习·学习
一车小面包2 小时前
对注意力机制的直观理解
人工智能·深度学习·机器学习
XZSSWJS2 小时前
深度学习基础-Chapter 02-Softmax与交叉熵
人工智能·深度学习
听风吹等浪起2 小时前
分类算法-逻辑回归
人工智能·算法·机器学习