神经网络的基本骨架——nn.Module(torch.nn里的Containers模块里的Module类)

**前置知识:

nn:neural network神经网络

1、torch.nn:与神经网络有关的库

Containers:torch.nn中的一个模块

Module:所有神经网络模型的基础类(Base class for all neural network modules)

注意:任何自定义的模型都应该继承自 nn.Module,并实现 __init__forward 方法,以定义模型的结构和前向传播的逻辑

2、x=torch.tensor(1.0):将输入数据转为张量,因为模型期望收到张量(tensor)类型的输入

因为模型的操作(如加法、矩阵乘法等)都是在张量上进行的

张量可以简单理解为一种多维数组,用于表示数据

  • 标量(0维张量) :一个单一的数字,比如 5

  • 向量(1维张量) :一组数字,比如 [1, 2, 3],可以看作是一条线上的点

  • 矩阵(2维张量):一个数字的表格,比如[ [1, 2], [3, 4] ]

  • 更高维的张量(3维及以上) :想象一下一个立方体,里面有许多数字,比如颜色的RGB值。更高维的张量可以表示更复杂的数据结构,比如视频帧、三维图像等

3、forward方法:如何由input计算得到output

forward和__call__的联系:

forward 是你定义的前向传播逻辑,用于计算输出的方法

__call__ 是一个特殊方法,用于使得模型实例可以像函数一样被调用,并负责调用 forward 以及处理其他一些功能

所以能让实例像函数一样被调用的实际上是__call__而不是forward

**代码:

自定义新模型:

继承nn.Module基类------>重写__init__方法和forward方法

python 复制代码
import torch
from torch import nn

class Xigua(nn.Module):

    def __init__(self):
        super().__init__()

    def forward(self,input):
        output=input+1
        return output

xigua1=Xigua() #先实例化新模型类,才能把它作为工具(一般有__call__方法的都这样做)
x=torch.tensor(1.0)
output=xigua1(x)
print(output)
相关推荐
骥龙19 小时前
2.4、恶意软件猎手:基于深度学习的二进制文件判别
人工智能·深度学习·网络安全
hans汉斯19 小时前
【计算机科学与应用】基于BERT与DeepSeek大模型的智能舆论监控系统设计
大数据·人工智能·深度学习·算法·自然语言处理·bert·去噪
十子木20 小时前
C++ 类似pytorch的库,工具包,或者机器学习的生态
c++·pytorch·机器学习
清风与日月21 小时前
halcon分类器使用标准流程
深度学习·目标检测·计算机视觉
渔舟渡简21 小时前
机器学习-回归分析之一元线性回归
机器学习·线性回归
西西阿西哥21 小时前
【随便聊聊】和ChatGPT聊聊潜空间
深度学习·chatgpt
B站计算机毕业设计之家1 天前
Python招聘数据分析可视化系统 Boss直聘数据 selenium爬虫 Flask框架 数据清洗(附源码)✅
爬虫·python·selenium·机器学习·数据分析·flask
CAD老兵1 天前
量化技术:如何让你的 3D 模型和 AI 模型瘦身又飞快
人工智能·深度学习·机器学习
算法与编程之美1 天前
探索不同的优化器对分类精度的影响和卷积层的输入输出的shape的计算公式
人工智能·深度学习·机器学习·分类·数据挖掘
大千AI助手1 天前
微软SPARTA框架:高效稀疏注意力机制详解
人工智能·深度学习·神经网络·llm·大千ai助手·sparta·稀疏注意力机制