神经网络的基本骨架——nn.Module(torch.nn里的Containers模块里的Module类)

**前置知识:

nn:neural network神经网络

1、torch.nn:与神经网络有关的库

Containers:torch.nn中的一个模块

Module:所有神经网络模型的基础类(Base class for all neural network modules)

注意:任何自定义的模型都应该继承自 nn.Module,并实现 __init__forward 方法,以定义模型的结构和前向传播的逻辑

2、x=torch.tensor(1.0):将输入数据转为张量,因为模型期望收到张量(tensor)类型的输入

因为模型的操作(如加法、矩阵乘法等)都是在张量上进行的

张量可以简单理解为一种多维数组,用于表示数据

  • 标量(0维张量) :一个单一的数字,比如 5

  • 向量(1维张量) :一组数字,比如 [1, 2, 3],可以看作是一条线上的点

  • 矩阵(2维张量):一个数字的表格,比如[ [1, 2], [3, 4] ]

  • 更高维的张量(3维及以上) :想象一下一个立方体,里面有许多数字,比如颜色的RGB值。更高维的张量可以表示更复杂的数据结构,比如视频帧、三维图像等

3、forward方法:如何由input计算得到output

forward和__call__的联系:

forward 是你定义的前向传播逻辑,用于计算输出的方法

__call__ 是一个特殊方法,用于使得模型实例可以像函数一样被调用,并负责调用 forward 以及处理其他一些功能

所以能让实例像函数一样被调用的实际上是__call__而不是forward

**代码:

自定义新模型:

继承nn.Module基类------>重写__init__方法和forward方法

python 复制代码
import torch
from torch import nn

class Xigua(nn.Module):

    def __init__(self):
        super().__init__()

    def forward(self,input):
        output=input+1
        return output

xigua1=Xigua() #先实例化新模型类,才能把它作为工具(一般有__call__方法的都这样做)
x=torch.tensor(1.0)
output=xigua1(x)
print(output)
相关推荐
强盛小灵通专卖员2 分钟前
基于深度学习的山体滑坡检测科研辅导:从论文实验到系统落地的完整思路
人工智能·深度学习·sci·小论文·山体滑坡
Hcoco_me23 分钟前
大模型面试题61:Flash Attention中online softmax(在线softmax)的实现方式
人工智能·深度学习·自然语言处理·transformer·vllm
哥布林学者23 分钟前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (七)双向 RNN 与深层 RNN
深度学习·ai
极海拾贝1 小时前
GeoScene解决方案中心正式上线!
大数据·人工智能·深度学习·arcgis·信息可视化·语言模型·解决方案
知乎的哥廷根数学学派1 小时前
基于生成对抗U-Net混合架构的隧道衬砌缺陷地质雷达数据智能反演与成像方法(以模拟信号为例,Pytorch)
开发语言·人工智能·pytorch·python·深度学习·机器学习
知乎的哥廷根数学学派2 小时前
基于自适应多尺度小波核编码与注意力增强的脉冲神经网络机械故障诊断(Pytorch)
人工智能·pytorch·python·深度学习·神经网络·机器学习
童话名剑2 小时前
锚框 与 完整YOLO示例(吴恩达深度学习笔记)
笔记·深度学习·yolo··anchor box
Hcoco_me4 小时前
大模型面试题62:PD分离
人工智能·深度学习·机器学习·chatgpt·机器人
OpenCSG4 小时前
AgenticOps 如何重构企业 AI 的全生命周期管理体系
大数据·人工智能·深度学习