LeetCode|70.爬楼梯

  • 这道题很像斐波那契数列,但是初始值不同,也有动态规划的解法,但是一开始我想到的是递归写法。
  • 现在我们站在第n阶台阶,那么,我们上一步就有两种可能:1、我们从第n-1阶台阶走一步上来的;2、我们从第n-2阶台阶直接走两步上来的。
  • 那么我们走到第n阶台阶的方法数量就等于我们走到第n-1阶台阶的方法数量加上第n-2阶台阶的方法数量之和。
python 复制代码
class Solution(object):
    def climbStairs(self, n):
        """
        :type n: int
        :rtype: int
        """
        if n == 0:
            return 1
        if n == 1:
            return 1
        if n == 2:
            return 2
        return self.climbStairs(n-1) + self.climbStairs(n-2)
  • 这就是我最初写出来的代码,其实很接近了,但是这样直接超时了,因为会有很多重复计算!
  • 这种情况可以把计算好的结果给存下来,这样就不用重复计算了,也是空间换时间的一种方式。
python 复制代码
class Solution(object):
    def climbStairs(self, n):
        """
        :type n: int
        :rtype: int
        """
        # 定义一个字典用于存储已经计算过的结果
        memo = {}

        # 定义递归函数
        def helper(n):
            # 如果 n 已经在 memo 中,直接返回
            if n in memo:
                return memo[n]
            
            # 基本情况
            if n == 0:
                return 1
            if n == 1:
                return 1
            if n == 2:
                return 2
            
            # 递归调用并存储结果
            nums1 = helper(n - 1)
            nums2 = helper(n - 2)
            memo[n] = nums1 + nums2  # 存储结果
            
            return memo[n]
        
        return helper(n)
  • 官方题解 - 动态规划+滚动数组
c 复制代码
class Solution {
public:
    int climbStairs(int n) {
        int p = 0, q = 0, r = 1;
        for (int i = 1; i <= n; ++i) {
            p = q; 
            q = r; 
            r = p + q;
        }
        return r;
    }
};
  • 官方题解 - 矩阵快速幂【很高效,遇到过好几次了】


go 复制代码
type matrix [2][2]int

func mul(a, b matrix) (c matrix) {
    for i := 0; i < 2; i++ {
        for j := 0; j < 2; j++ {
            c[i][j] = a[i][0]*b[0][j] + a[i][1]*b[1][j]
        }
    }
    return c
}

func pow(a matrix, n int) matrix {
    res := matrix{{1, 0}, {0, 1}}
    for ; n > 0; n >>= 1 {
        if n&1 == 1 {
            res = mul(res, a)
        }
        a = mul(a, a)
    }
    return res
}

func climbStairs(n int) int {
    res := pow(matrix{{1, 1}, {1, 0}}, n)
    return res[0][0]
}
相关推荐
仙俊红25 分钟前
LeetCode每日一题,20250914
算法·leetcode·职场和发展
风中的微尘7 小时前
39.网络流入门
开发语言·网络·c++·算法
西红柿维生素8 小时前
JVM相关总结
java·jvm·算法
ChillJavaGuy9 小时前
常见限流算法详解与对比
java·算法·限流算法
sali-tec10 小时前
C# 基于halcon的视觉工作流-章34-环状测量
开发语言·图像处理·算法·计算机视觉·c#
你怎么知道我是队长11 小时前
C语言---循环结构
c语言·开发语言·算法
艾醒11 小时前
大模型面试题剖析:RAG中的文本分割策略
人工智能·算法
纪元A梦13 小时前
贪心算法应用:K-Means++初始化详解
算法·贪心算法·kmeans
_不会dp不改名_13 小时前
leetcode_21 合并两个有序链表
算法·leetcode·链表
mark-puls13 小时前
C语言打印爱心
c语言·开发语言·算法