Self-Attention怎么计算?背后的数学原理是什么?

🎁👉点击进入文心快码 Baidu Comate 官网,体验智能编码之旅,还有超多福利!🎁

🔍【大厂面试真题】系列,带你攻克大厂面试真题,秒变offer收割机!

❓今日问题:Self-Attention怎么计算?背后的数学原理是什么?

❤️一起看看文心快码Baidu Comate给出的答案吧!如果这个问题你也会,也可以在评论区写出你的答案哦~

复制代码
@Comate


Self-Attention的计算过程涉及几个关键步骤,其背后的数学原理主要基于线性代数和概率论。以下是Self-Attention的计算方法和数学原理的简要说明:

Self-Attention的计算步骤:

1.输入序列的线性变换:

对于输入序列中的每个元素(如词向量),通过线性变换(即乘以权重矩阵)得到三个向量:Query(查询)、Key(键)、Value(值)。这三个向量分别代表了元素的查询角色、被比较角色和包含实际内容信息的角色。

2.计算注意力分数:

对于序列中的每个元素,计算其Query与所有元素的Key之间的点积(或采用其他相似度函数),得到注意力分数。这个分数反映了当前元素与其他元素之间的关联程度。

3.注意力分数的归一化:

通过Softmax函数将注意力分数转换为概率分布,使得所有元素的权重之和为1。这样做可以突出重要元素的权重,同时抑制不相关元素的权重。

4.计算加权和:

将每个元素的Value与其对应的归一化后的注意力权重相乘,并对所有元素进行加权求和,得到Self-Attention的输出。这个输出是一个融合了序列中所有元素信息的加权表示。

背后的数学原理:
线性变换:通过矩阵乘法实现输入序列的线性变换,从而得到Query、Key和Value向量。这些向量在不同的注意力头中捕获不同的特征和信息。

点积相似度:使用点积(或其他相似度函数)计算Query与Key之间的相似度。点积是一种衡量向量之间相似性的简单而有效的方法,其结果反映了向量在方向上的匹配程度。

Softmax函数:该函数将原始分数转换为正的概率分布,同时放大了高分值的权重并抑制了低分值的权重。这样做可以使得模型更加关注与当前元素高度相关的其他元素。

加权求和:通过加权求和的方式,Self-Attention能够融合序列中所有元素的信息,并根据它们与当前元素的关联程度进行加权。这种机制使得模型能够捕获序列中的全局依赖关系,并生成具有上下文感知能力的输出表示。

综上所述,Self-Attention的计算过程涉及线性变换、相似度计算、归一化和加权求和等步骤,其背后的数学原理主要基于线性代数和概率论的相关概念和方法。

🎁👉点击进入文心快码 Baidu Comate 官网,体验智能编码之旅,还有超多福利!🎁

相关推荐
✿ ༺ ོIT技术༻1 小时前
笔试强训:Day2
开发语言·c++·笔记·算法
小oo呆3 小时前
【自然语言处理与大模型】模型压缩技术之量化
人工智能·自然语言处理
Magnum Lehar3 小时前
ApophisZerg游戏引擎项目目录展示
人工智能·vscode·编辑器·游戏引擎
sunbyte3 小时前
Tailwind CSS 初学者入门指南:项目集成,主要变更内容!
前端·css
飞桨PaddlePaddle3 小时前
Wan2.1和HunyuanVideo文生视频模型算法解析与功能体验丨前沿多模态模型开发与应用实战第六期
人工智能·算法·百度·音视频·paddlepaddle·飞桨·deepseek
绿算技术3 小时前
存储新势力:助力DeepSeek一体机
人工智能·科技·缓存·fpga开发
可爱的秋秋啊3 小时前
vue3,element ui框架中为el-table表格实现自动滚动,并实现表头汇总数据
前端·vue.js·笔记·elementui
一夜枫林3 小时前
uniapp自定义拖拽排列
前端·javascript·uni-app
Y1nhl4 小时前
搜广推校招面经八十一
开发语言·人工智能·pytorch·深度学习·机器学习·推荐算法·搜索算法
胡攀峰4 小时前
第12章 微调生成模型
人工智能·大模型·llm·sft·强化学习·rlhf·指令微调