Self-Attention怎么计算?背后的数学原理是什么?

🎁👉点击进入文心快码 Baidu Comate 官网,体验智能编码之旅,还有超多福利!🎁

🔍【大厂面试真题】系列,带你攻克大厂面试真题,秒变offer收割机!

❓今日问题:Self-Attention怎么计算?背后的数学原理是什么?

❤️一起看看文心快码Baidu Comate给出的答案吧!如果这个问题你也会,也可以在评论区写出你的答案哦~

复制代码
@Comate


Self-Attention的计算过程涉及几个关键步骤,其背后的数学原理主要基于线性代数和概率论。以下是Self-Attention的计算方法和数学原理的简要说明:

Self-Attention的计算步骤:

1.输入序列的线性变换:

对于输入序列中的每个元素(如词向量),通过线性变换(即乘以权重矩阵)得到三个向量:Query(查询)、Key(键)、Value(值)。这三个向量分别代表了元素的查询角色、被比较角色和包含实际内容信息的角色。

2.计算注意力分数:

对于序列中的每个元素,计算其Query与所有元素的Key之间的点积(或采用其他相似度函数),得到注意力分数。这个分数反映了当前元素与其他元素之间的关联程度。

3.注意力分数的归一化:

通过Softmax函数将注意力分数转换为概率分布,使得所有元素的权重之和为1。这样做可以突出重要元素的权重,同时抑制不相关元素的权重。

4.计算加权和:

将每个元素的Value与其对应的归一化后的注意力权重相乘,并对所有元素进行加权求和,得到Self-Attention的输出。这个输出是一个融合了序列中所有元素信息的加权表示。

背后的数学原理:
线性变换:通过矩阵乘法实现输入序列的线性变换,从而得到Query、Key和Value向量。这些向量在不同的注意力头中捕获不同的特征和信息。

点积相似度:使用点积(或其他相似度函数)计算Query与Key之间的相似度。点积是一种衡量向量之间相似性的简单而有效的方法,其结果反映了向量在方向上的匹配程度。

Softmax函数:该函数将原始分数转换为正的概率分布,同时放大了高分值的权重并抑制了低分值的权重。这样做可以使得模型更加关注与当前元素高度相关的其他元素。

加权求和:通过加权求和的方式,Self-Attention能够融合序列中所有元素的信息,并根据它们与当前元素的关联程度进行加权。这种机制使得模型能够捕获序列中的全局依赖关系,并生成具有上下文感知能力的输出表示。

综上所述,Self-Attention的计算过程涉及线性变换、相似度计算、归一化和加权求和等步骤,其背后的数学原理主要基于线性代数和概率论的相关概念和方法。

🎁👉点击进入文心快码 Baidu Comate 官网,体验智能编码之旅,还有超多福利!🎁

相关推荐
2301_8187305630 分钟前
transformer(上)
人工智能·深度学习·transformer
木枷36 分钟前
Online Process Reward Learning for Agentic Reinforcement Learning
人工智能·深度学习·机器学习
m0_563745111 小时前
误差卡尔曼滤波在VINS-mono中的应用
人工智能·机器学习
朱昆鹏1 小时前
开源 Claude Code + Codex + 面板 的未来vibecoding平台
前端·后端·github
lyrieek1 小时前
pgadmin的导出图实现,还在搞先美容后拍照再恢复?
前端
恣逍信点1 小时前
《凌微经 · 理悖相涵》第六章 理悖相涵——关系构型之模因
人工智能·科技·程序人生·生活·交友·哲学
永远是我的最爱1 小时前
基于.NET的小小便利店前台收银系统
前端·sqlserver·.net·visual studio
晚霞的不甘1 小时前
Flutter for OpenHarmony 可视化教学:A* 寻路算法的交互式演示
人工智能·算法·flutter·架构·开源·音视频
从文处安1 小时前
「九九八十一难」第一难:前端数据mock指南(TS + VUE)
前端
小程故事多_801 小时前
Agent Infra核心技术解析:Sandbox sandbox技术原理、选型逻辑与主流方案全景
java·开发语言·人工智能·aigc