使用 OpenCV 和 Haar Cascade 检测人脸

技术讲解

1. 环境准备

Python 和 OpenCV

确保你的开发环境中安装了 Python 3.x 和 OpenCV。OpenCV 是一个开源的计算机视觉和机器学习软件库,提供了大量的图像处理和计算机视觉算法。它支持多种编程语言,包括 Python。

安装 OpenCV:

bash 复制代码
pip install opencv-python
2. Haar Cascade 模型

Haar Cascade 分类器

OpenCV 提供了预训练的 Haar Cascade 分类器来检测图像中的人脸。cv2.CascadeClassifier 是用来加载这些分类器的一个类。在这个例子中,我们使用的是 haarcascade_frontalface_default.xml,这是 OpenCV 提供的一个默认的人脸检测模型。

加载 Haar Cascade 模型:

python 复制代码
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
3. CUDA 设备设置

CUDA 设备可见性

如果你的应用程序需要使用 GPU,可以使用环境变量 CUDA_VISIBLE_DEVICES 来设置哪些 GPU 设备是可见的。这在有多个 GPU 的情况下特别有用,可以指定应用程序使用特定的 GPU。

设置 CUDA 可见设备:

python 复制代码
import cv2
import os
from pathlib import Path
import shutil

# 加载预训练的 Haar cascade 模型
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')

# 设置 CUDA 可见设备
os.environ["CUDA_VISIBLE_DEVICES"] = "0"  # 设置为你的 GPU 设备号

# 定义参考文件夹
REFERENCE_DIR = "no_faces"
os.makedirs(REFERENCE_DIR, exist_ok=True)
4. 图像处理

加载和调整大小

为了提高检测效率,通常会对图像进行缩放。缩放可以减少处理时间,同时保持足够的分辨率来进行人脸检测。

加载并调整图像大小:

python 复制代码
def load_and_resize_image(file_path, max_size=1024):
    image = cv2.imread(file_path)
    if image is None:
        raise FileNotFoundError(f"Could not load image from {file_path}")
    
    height, width = image.shape[:2]
    scale = min(max_size / height, max_size / width)
    image = cv2.resize(image, (int(width * scale), int(height * scale)))
    return image

人脸检测

使用 Haar Cascade 分类器检测图像中的人脸。detectMultiScale 方法接受多个参数,其中 scaleFactor 控制每次图像尺寸变化的比例因子,minNeighbors 表示检测到的目标周围至少有多少个邻居才能认定为真实目标,minSize 表示检测到的目标的最小尺寸。

检测图像中的人脸:

python 复制代码
def detect_faces(image):
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    face_rects = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
    return face_rects
5. 文件操作

移动图片

当检测到图片中没有人脸时,将图片移动到一个特定的文件夹中。使用 shutil.move 函数可以轻松实现这一点。

移动图片到无脸文件夹:

python 复制代码
def move_image_to_no_faces_folder(file_path):
    destination = Path(REFERENCE_DIR) / file_path.name
    shutil.move(str(file_path), str(destination))
6. 主函数

最后,编写一个主函数来处理指定文件夹中的所有 .png 图片,并调用上述函数完成人脸检测和图片分类。

处理图片:

python 复制代码
def process_image(png_file):
    try:
        print(f"Processing {png_file.name}...")
        image = load_and_resize_image(png_file)
        face_rects = detect_faces(image)
        
        if len(face_rects) == 0:
            print(f"No faces detected in {png_file.name}. Moving to no_faces folder.")
            move_image_to_no_faces_folder(png_file)
        else:
            print(f"Faces detected in {png_file.name}.")
    except Exception as e:
        print(f"Error processing {png_file.name}: {str(e)}")

def process_images(directory):
    directory_path = Path(directory)
    png_files = list(directory_path.glob('*.png'))
    
    for png_file in png_files:
        process_image(png_file)

if __name__ == "__main__":
    input_directory = 'images'  # 请确保这个路径是正确的
    process_images(input_directory)

总结

通过上述代码,我们可以自动检测图片中是否存在人脸,并将无人脸的图片分类到特定文件夹中。这种方法在处理大量图片时非常有用,特别是在需要对图片进行初步筛选的情况下。使用 OpenCV 的 Haar Cascade 模型和 Python 的标准库函数,我们可以轻松实现这一功能。

相关推荐
3DVisionary7 分钟前
3D-DIC与机器学习协同模拟材料应力-应变本构行为研究
人工智能·机器学习·3d·3d-dic技术 机器学习·应力-应变本构行为·卷积神经网络(ecnn)·数字图像相关法(dic)
神经星星9 分钟前
无需预对齐即可消除批次效应,东京大学团队开发深度学习框架STAIG,揭示肿瘤微环境中的详细基因信息
人工智能·深度学习·机器学习
神经星星9 分钟前
【vLLM 学习】调试技巧
人工智能·机器学习·编程语言
程序员Linc27 分钟前
写给新人的深度学习扫盲贴:向量与矩阵
人工智能·深度学习·矩阵·向量
xcLeigh35 分钟前
OpenCV从零开始:30天掌握图像处理基础
图像处理·人工智能·python·opencv
果冻人工智能39 分钟前
如何有效应对 RAG 中的复杂查询?
人工智能
2305_797882091 小时前
AI识图小程序的功能框架设计
人工智能·微信小程序·小程序
果冻人工智能1 小时前
向量搜索中常见的8个错误(以及如何避免它们)
人工智能
碳基学AI1 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义免费下载方法
大数据·人工智能·python·gpt·算法·语言模型·集成学习
补三补四1 小时前
机器学习-聚类分析算法
人工智能·深度学习·算法·机器学习