大语言模型生成如何解决幻觉率问题

大语言模型生成中的"幻觉率"问题,指的是模型生成的内容不准确或虚构的情况。幻觉率过高会导致错误信息的传播,特别是在一些需要高度准确性的任务中,例如法律、医学等领域。

RAG

检索增强生成(Retrieval-Augmented Generation,RAG):将语言模型与检索系统结合,让模型在生成之前先检索相关的事实数据,从而增强生成的准确性。

RLHF

基于人类反馈的强化学习(Reinforcement Learning with Human Feedback,RLHF):通过人类标注者对模型输出的评估与反馈,模型可以学会减少不准确或虚构的生成内容。例如,OpenAI 的 GPT 模型通过这个方法显著降低幻觉率。

有监督微调:将模型与已知正确的答案进行有监督微调,特别是在关键领域,这有助于模型学会生成更为准确的结果。

其它

  1. 数据质量控制
  2. 使用多领域的高质量数据
  3. 事实验证和查询检索
  4. 显性推理链
  5. 明确模型限制
  6. 使用更小、更专精的子模型
  7. 增强对外部知识的使用
  8. 生成内容的可解释性
  9. 使用引用和来源
  10. 数据多样化
相关推荐
m0_634448892 小时前
从上下文学习和微调看语言模型的泛化:一项对照研究
学习·算法·语言模型
人工智能小豪3 小时前
2025年大模型平台落地实践研究报告|附75页PDF文件下载
大数据·人工智能·transformer·anythingllm·ollama·大模型应用
芯盾时代3 小时前
AI在网络安全领域的应用现状和实践
人工智能·安全·web安全·网络安全
黑鹿0223 小时前
机器学习基础(三) 逻辑回归
人工智能·机器学习·逻辑回归
电鱼智能的电小鱼4 小时前
虚拟现实教育终端技术方案——基于EFISH-SCB-RK3588的全场景国产化替代
linux·网络·人工智能·分类·数据挖掘·vr
天天代码码天天5 小时前
C# Onnx 动漫人物头部检测
人工智能·深度学习·神经网络·opencv·目标检测·机器学习·计算机视觉
Joseit5 小时前
从零打造AI面试系统全栈开发
人工智能·面试·职场和发展
小猪猪_15 小时前
多视角学习、多任务学习,迁移学习
人工智能·迁移学习
飞哥数智坊5 小时前
AI编程实战:Cursor 1.0 上手实测,刀更锋利马更快
人工智能·cursor
vlln5 小时前
【论文解读】ReAct:从思考脱离行动, 到行动反馈思考
人工智能·深度学习·机器学习