大语言模型生成如何解决幻觉率问题

大语言模型生成中的"幻觉率"问题,指的是模型生成的内容不准确或虚构的情况。幻觉率过高会导致错误信息的传播,特别是在一些需要高度准确性的任务中,例如法律、医学等领域。

RAG

检索增强生成(Retrieval-Augmented Generation,RAG):将语言模型与检索系统结合,让模型在生成之前先检索相关的事实数据,从而增强生成的准确性。

RLHF

基于人类反馈的强化学习(Reinforcement Learning with Human Feedback,RLHF):通过人类标注者对模型输出的评估与反馈,模型可以学会减少不准确或虚构的生成内容。例如,OpenAI 的 GPT 模型通过这个方法显著降低幻觉率。

有监督微调:将模型与已知正确的答案进行有监督微调,特别是在关键领域,这有助于模型学会生成更为准确的结果。

其它

  1. 数据质量控制
  2. 使用多领域的高质量数据
  3. 事实验证和查询检索
  4. 显性推理链
  5. 明确模型限制
  6. 使用更小、更专精的子模型
  7. 增强对外部知识的使用
  8. 生成内容的可解释性
  9. 使用引用和来源
  10. 数据多样化
相关推荐
说私域几秒前
基于开源链动2+1模式、AI智能名片与S2B2C商城小程序的运营创新研究
人工智能·小程序
weixin_446260853 分钟前
Agentic Frontend: 灵活的AI助手与聊天机器人构建平台
人工智能·机器人
墨_浅-3 分钟前
教育/培训行业智能体应用分类及知识库检索模型微调
人工智能·分类·数据挖掘
金融小师妹5 分钟前
AI量化视角:美11月CPI数据冲击下的美联储降息预期鸽派与资产定价重构
大数据·人工智能·深度学习
Cigaretter76 分钟前
Day 36GPU的训练以及类的call方法
人工智能·深度学习
Dev7z15 分钟前
基于中心先验的全局对比度显著性检测算法
人工智能·算法·计算机视觉
陈天伟教授23 分钟前
人工智能训练师认证教程(4)OpenCV 快速实践
人工智能·python·神经网络·opencv·机器学习·计算机视觉
数式Oinone25 分钟前
数式Oinone7早鸟体验版发布,全面适配JDK17,AI Native加速产品智能化转型
人工智能·低代码·低代码平台·数式oinone
啊阿狸不会拉杆28 分钟前
《数字图像处理》第 5 章-图像复原与重建
图像处理·人工智能·算法·matlab·数字图像处理
千殇华来31 分钟前
音频定义/声道/音频格式-Ambisonics声音
人工智能·语音识别