大语言模型生成如何解决幻觉率问题

大语言模型生成中的"幻觉率"问题,指的是模型生成的内容不准确或虚构的情况。幻觉率过高会导致错误信息的传播,特别是在一些需要高度准确性的任务中,例如法律、医学等领域。

RAG

检索增强生成(Retrieval-Augmented Generation,RAG):将语言模型与检索系统结合,让模型在生成之前先检索相关的事实数据,从而增强生成的准确性。

RLHF

基于人类反馈的强化学习(Reinforcement Learning with Human Feedback,RLHF):通过人类标注者对模型输出的评估与反馈,模型可以学会减少不准确或虚构的生成内容。例如,OpenAI 的 GPT 模型通过这个方法显著降低幻觉率。

有监督微调:将模型与已知正确的答案进行有监督微调,特别是在关键领域,这有助于模型学会生成更为准确的结果。

其它

  1. 数据质量控制
  2. 使用多领域的高质量数据
  3. 事实验证和查询检索
  4. 显性推理链
  5. 明确模型限制
  6. 使用更小、更专精的子模型
  7. 增强对外部知识的使用
  8. 生成内容的可解释性
  9. 使用引用和来源
  10. 数据多样化
相关推荐
Ronin-Lotus3 小时前
深度学习篇---剪裁&缩放
图像处理·人工智能·缩放·剪裁
cpsvps3 小时前
3D芯片香港集成:技术突破与产业机遇全景分析
人工智能·3d
国科安芯4 小时前
抗辐照芯片在低轨卫星星座CAN总线通讯及供电系统的应用探讨
运维·网络·人工智能·单片机·自动化
AKAMAI4 小时前
利用DataStream和TrafficPeak实现大数据可观察性
人工智能·云原生·云计算
Ai墨芯1114 小时前
深度学习水论文:特征提取
人工智能·深度学习
无名工程师4 小时前
神经网络知识讨论
人工智能·神经网络
nbsaas-boot5 小时前
AI时代,我们更需要自己的开发方式与平台
人工智能
SHIPKING3935 小时前
【机器学习&深度学习】LLamaFactory微调效果与vllm部署效果不一致如何解决
人工智能·深度学习·机器学习
jonyleek6 小时前
如何搭建一套安全的,企业级本地AI专属知识库系统?从安装系统到构建知识体系,全流程!
人工智能·安全
MQ_SOFTWARE6 小时前
AI驱动的金融推理:Fin-R1模型如何重塑行业决策逻辑
人工智能·金融