YOLOv11改进-模块-引入矩形自校准模块RCM有利于复杂场景(小目标、遮挡等)

本篇文章将介绍一个新的改进机制------矩形自校准模块RCM,并阐述如何将其应用于YOLOv11中,显著提升模型性能。首先,我们将解析RCM的工作原理,RCM通过矩形自校准注意力机制和形状自校准捕捉全局上下文信息,并结合局部细节融合,提升模型对前景物体的建模能力和边界识别精度。为了解决复杂场景中难以处理前景背景分割、精确定位和多尺度物体检测这些问题,我们将RCM(矩形自校准模块)与YOLOv11结合,利用RCM的上下文捕捉与特征增强能力,提升YOLOv11的检测性能。随后,本文将详细讨论如何将RCM引入YOLOv11模型中,优化其目标检测能力。

1. Rectangular Self-Calibration Module (RCM)结构介绍

RCM是专为语义分割等任务设计的上下文增强模块,旨在通过捕捉水平和垂直全局上下文信息,提升模型对前景物体的建模能力。它的核心思想包括以下几个部分:

1. 矩形自校准注意力机制:通过水平和垂直池化操作,生成矩形注意力区域,用以捕捉关键的上下文信息。这些区域通过加权机制使模型更加聚焦前景对象。

2. 形状自校准:通过大核卷积调节矩形注意力区域的形状,使其更贴近前景物体,提升模型的前景定位精度。

3. 局部细节融合:通过深度卷积进一步增强局部特征的细节表示,使得模型在边界识别和小物体检测中表现更好。

2. YOLOv11与RCM的结合

在YOLOv11中,RCM模块可以用于增强目标检测中的空间特征建模,尤其是在处理复杂场景下的前景目标时,通过捕捉水平和垂直的全局上下文,RCM可以帮助YOLOv11更加准确地定位和识别不同尺度的物体。具体可以通过以下几方面来结合:

  1. backbone引入:将RCM应用于YOLOv11的特征提取阶段,通过矩形自校准机制,提升网络对前景物体的注意力集中度,使检测更加精准。

  2. **head引入:**利用RCM的多尺度上下文提取能力,将不同分辨率的特征进行融合,进一步提升YOLOv11在复杂场景下的多目标检测性能。

3. Rectangular Self-Calibration Module (RCM)代码部分

python 复制代码
import torch
import torch.nn as nn
from timm.models.layers import DropPath, to_2tuple

# from conv import Conv
# from block import C2f, C3k

from .conv import Conv
from .block import C2f, C3k

class ConvMlp(nn.Module):
    """ 使用 1x1 卷积保持空间维度的 MLP
    """
    def __init__(
            self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU,
            norm_layer=None, bias=True, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        bias = to_2tuple(bias)

        self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1, bias=bias[0])
        self.norm = norm_layer(hidden_features) if norm_layer else nn.Identity()
        self.act = act_layer()
        self.drop = nn.Dropout(drop)
        self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1, bias=bias[1])

    def forward(self, x):
        x = self.fc1(x)
        x = self.norm(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        return x

#rectangular self-calibration attention (RCA)
class RCA(nn.Module):
    def __init__(self, inp, kernel_size=1, ratio=1, band_kernel_size=11, dw_size=(1, 1), padding=(0, 0), stride=1,
                 square_kernel_size=2, relu=True):
        super(RCA, self).__init__()
        self.dwconv_hw = nn.Conv2d(inp, inp, square_kernel_size, padding=square_kernel_size // 2, groups=inp)
        self.pool_h = nn.AdaptiveAvgPool2d((None, 1))
        self.pool_w = nn.AdaptiveAvgPool2d((1, None))

        gc = inp // ratio
        self.excite = nn.Sequential(
            nn.Conv2d(inp, gc, kernel_size=(1, band_kernel_size), padding=(0, band_kernel_size // 2), groups=gc),
            nn.BatchNorm2d(gc),
            nn.ReLU(inplace=True),
            nn.Conv2d(gc, inp, kernel_size=(band_kernel_size, 1), padding=(band_kernel_size // 2, 0), groups=gc),
            nn.Sigmoid()
        )

    def sge(self, x):
        # [N, D, C, 1]
        x_h = self.pool_h(x)
        x_w = self.pool_w(x)
        x_gather = x_h + x_w  # .repeat(1,1,1,x_w.shape[-1])
        ge = self.excite(x_gather)  # [N, 1, C, 1]

        return ge

    def forward(self, x):
        loc = self.dwconv_hw(x)
        att = self.sge(x)
        out = att * loc

        return out

#Rectangular Self-Calibration Module (RCM)
class RCM(nn.Module):
    """ MetaNeXtBlock 块
    参数:
        dim (int): 输入通道数.
        drop_path (float): 随机深度率。默认: 0.0
        ls_init_value (float): 层级比例初始化值。默认: 1e-6.
    """
    def __init__(
            self,
            dim,
            token_mixer=RCA,
            norm_layer=nn.BatchNorm2d,
            mlp_layer=ConvMlp,
            mlp_ratio=2,
            act_layer=nn.GELU,
            ls_init_value=1e-6,
            drop_path=0.,
            dw_size=11,
            square_kernel_size=3,
            ratio=1,
    ):
        super().__init__()
        self.token_mixer = token_mixer(dim, band_kernel_size=dw_size, square_kernel_size=square_kernel_size,
                                       ratio=ratio)
        self.norm = norm_layer(dim)
        self.mlp = mlp_layer(dim, int(mlp_ratio * dim), act_layer=act_layer)
        self.gamma = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value else None
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        shortcut = x
        x = self.token_mixer(x)
        x = self.norm(x)
        x = self.mlp(x)
        if self.gamma is not None:
            x = x.mul(self.gamma.reshape(1, -1, 1, 1))
        x = self.drop_path(x) + shortcut
        return x


class Bottleneck_RCM(nn.Module):
    """Standard bottleneck."""

    def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
        """Initializes a standard bottleneck module with optional shortcut connection and configurable parameters."""
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, k[0], 1)
        self.cv2 = Conv(c_, c2, k[1], 1, g=g)
        self.cv3 = RCM(c_)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        """Applies the YOLO FPN to input data."""
        # return x + self.cv2(self.cv1(self.cv3(x))) if self.add else self.cv2(self.cv1(self.cv3(x)))
        return x + self.cv2(self.cv3(self.cv1(x))) if self.add else self.cv2(self.cv3(self.cv1(x)))
        # return x + self.cv2(self.cv3(x)) if self.add else self.cv2(self.cv3(x))

class C3k2_RCM(C2f):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True):
        """Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks."""
        super().__init__(c1, c2, n, shortcut, g, e)
        self.m = nn.ModuleList(
            C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck_RCM(self.c, self.c, shortcut, g) for _ in range(n)
        )



if __name__ == '__main__':
    TB = RCM(256)
    #创建一个输入张量
    batch_size = 8
    input_tensor=torch.randn(batch_size, 256, 64, 64 )
    #运行模型并打印输入和输出的形状
    output_tensor =TB(input_tensor)
    print("Input shape:",input_tensor.shape)
    print("0utput shape:",output_tensor.shape)

4. 将RCM引入到YOLOv11中

第一: 将下面的核心代码复制到D:\bilibili\model\YOLO11\ultralytics-main\ultralytics\nn路径下,如下图所示。

第二:在task.py中导入RCM包

第三:在task.py中的模型配置部分下面代码

第二改进修改代码的部分

第一改进修改代码的部分

复制代码
        elif m is RCM :
            args = [ch[f]]

第四:将模型配置文件复制到YOLOV11.YAMY文件中

第一个改进配置文件

python 复制代码
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, RCM, []]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 14], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 11], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)

  - [[17, 20, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)

第二个改进配置文件

python 复制代码
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2_RCM, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2_RCM, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2_RCM, [1024, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)

第五:运行成功

python 复制代码
from ultralytics.models import NAS, RTDETR, SAM, YOLO, FastSAM, YOLOWorld

if __name__=="__main__":


    # 使用自己的YOLOv11.yamy文件搭建模型并加载预训练权重训练模型
    model = YOLO(r"D:\bilibili\model\YOLO11\ultralytics-main\ultralytics\cfg\models\11\yolo11_RCM.yaml")\
        .load(r'D:\bilibili\model\YOLO11\ultralytics-main\yolo11n.pt')  # build from YAML and transfer weights

    results = model.train(data=r'D:\bilibili\model\ultralytics-main\ultralytics\cfg\datasets\VOC_my.yaml',
                          epochs=100, imgsz=640, batch=8)

相关推荐
西西弗Sisyphus10 分钟前
基于推理的目标检测 DetGPT
目标检测·计算机视觉
Jamence24 分钟前
【深度学习数学知识】-贝叶斯公式
人工智能·深度学习·概率论
feifeikon27 分钟前
机器学习DAY4续:梯度提升与 XGBoost (完)
人工智能·深度学习·机器学习
凡人的AI工具箱34 分钟前
每天40分玩转Django:实操多语言博客
人工智能·后端·python·django·sqlite
Jackilina_Stone37 分钟前
【自动驾驶】3 激光雷达③
人工智能·自动驾驶
HUIBUR科技44 分钟前
从虚拟到现实:AI与AR/VR技术如何改变体验经济?
人工智能·ar·vr
QQ_7781329741 小时前
基于云计算的资源管理系统
人工智能·云计算
伊一大数据&人工智能学习日志1 小时前
OpenCV计算机视觉 01 图像与视频的读取操作&颜色通道
人工智能·opencv·计算机视觉
取个名字真难呐1 小时前
LossMaskMatrix损失函数掩码矩阵
python·深度学习·矩阵
soulteary1 小时前
使用 AI 辅助开发一个开源 IP 信息查询工具:一
人工智能·tcp/ip·开源·ip 查询