端到端自动驾驶模型SparseDrive部署过程

SparseDrive
论文链接

https://arxiv.org/pdf/2405.19620
仓库链接

https://github.com/swc-17/SparseDrive

论文和模型的相关介绍大家可以参考其他博客的介绍,这里只介绍模型部署的过程和中间可能遇到的问题解决办法,以及代码解析和使用记录。

模型部署

项目自带有# Quick Start文档,可以参考。

下载的几步可以同步执行。

这里也介绍一下:

1、conda验证或安装

需要使用conda构建虚拟环境

bash 复制代码
nvcc -V
复制代码
指令查看conda版本
无conda查看conda安装文档

2、设置新的虚拟环境

初次使用进行create,后续只需进行activate即可。

bash 复制代码
conda create -n sparsedrive python=3.8 -y
conda activate sparsedrive

3、安装依赖包### Install dependency packpages

是整个过程最复杂的一步了吧,消耗时间较长

cd 至sparsedrive的文件目录下

bash 复制代码
sparsedrive_path="path/to/sparsedrive"
cd ${sparsedrive_path}
pip3 install --upgrade pip
pip3 install torch==1.13.0+cu116 torchvision==0.14.0+cu116 torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cu116
pip3 install -r requirement.txt

很容易下载出错,也可以到下载链接出手动下载。https://download.pytorch.org/whl/cu116

按照对应的版本下载就行。我下载的是torch-1.13.0+cu116-cp38-cp38-linux_x86_64.whl等。

下载完成后进行离线安装

打开命令行,使用如下指令进入需要安装pytorch的环境中:

bash 复制代码
conda activate xxx ##xx代表需要安装的具体环境名称

进入对应环境后,输入下面的指令安装torch,torchvision和torchaudio。

bash 复制代码
pip install torch-2.0.0+cu117-cp39-cp39-linux_x86_64.whl
......
 ##安装所有下载的文件,注意使用文件的绝对路径

验证是否安装成功

通过在命令行中输入以下指令验证pytorch是否安装成功

bash 复制代码
python
>>>import torch
>>>torch.cuda.is_available()
True

当显示True表示torch安装成功。

bash 复制代码
pip3 install -r requirement.txt

执行这条指令时可能会报错

bash 复制代码
error: subprocess-exited-with-error
  
  × python setup.py egg_info did not run successfully.
  │ exit code: 1
  ╰─> [12 lines of output]
      fatal: 不是 git 仓库(或者任何父目录):.git
      Traceback (most recent call last):
        File "<string>", line 2, in <module>
        File "<pip-setuptools-caller>", line 34, in <module>
        File "/tmp/pip-install-az4fmfe4/flash-attn_4cf3f6b2d7834a539c7624728fa4b02f/setup.py", line 117, in <module>
          raise RuntimeError(
      RuntimeError: FlashAttention is only supported on CUDA 11.6 and above.  Note: make sure nvcc has a supported version by running nvcc -V.
      
      
      torch.__version__  = 1.13.0+cu116

原因是cuda版本过低,升级至要求版本即可。

4、编译可变形聚合操作### Compile the deformable_aggregation CUDA op

前置依赖torch,安装好后可以直接进行编译操作

bash 复制代码
cd projects/mmdet3d_plugin/ops
python3 setup.py develop
cd ../../../

5、准备数据集### Prepare the data

数据集下载链接

在下载页面下载数据集和CAN bus expansion

根据自己的需要下载mini或者all数据集。(点击后面荧光色US下载)

下载完成后移动至对应文件夹

bash 复制代码
cd ${sparsedrive_path}
mkdir data
ln -s path/to/nuscenes ./data/nuscenes

打包数据集的元信息和标签,并将所需的pkl文件生成到data/infos。

我们还在data_converter中生成map_annos,默认roi_size为(30,60)。

建议初始按照默认进行执行(如果你想要一个不同的范围,你可以在tools/data_converter/nuscenes_converter.py中修改roi_sze)。

bash 复制代码
sh scripts/create_data.sh

6、通过K-means生成锚点### Generate anchors by K-means

对于稀疏感知模块很重要

Gnerated anchors are saved to data/kmeans and can be visualized in vis/kmeans.

bash 复制代码
sh scripts/kmeans.sh

7、下载预训练权重### Download pre-trained weights

Download the required backbone pre-trained weights.

bash 复制代码
mkdir ckpt
wget https://download.pytorch.org/models/resnet50-19c8e357.pth -O ckpt/resnet50-19c8e357.pth

8、开始训练和测试### Commence training and testing

bash 复制代码
# train
sh scripts/train.sh

# test
sh scripts/test.sh

9、可视化### Visualization

复制代码
sh scripts/visualize.sh
相关推荐
谷粒.20 分钟前
Cypress vs Playwright vs Selenium:现代Web自动化测试框架深度评测
java·前端·网络·人工智能·python·selenium·测试工具
CareyWYR5 小时前
每周AI论文速递(251201-251205)
人工智能
北京耐用通信6 小时前
电磁阀通讯频频“掉链”?耐达讯自动化Ethernet/IP转DeviceNet救场全行业!
人工智能·物联网·网络协议·安全·自动化·信息与通信
cooldream20097 小时前
小智 AI 智能音箱深度体验全解析:人设、音色、记忆与多场景玩法的全面指南
人工智能·嵌入式硬件·智能音箱
oil欧哟7 小时前
AI 虚拟试穿实战,如何低成本生成模特上身图
人工智能·ai作画
央链知播7 小时前
中国移联元宇宙与人工智能产业委联席秘书长叶毓睿受邀到北京联合大学做大模型智能体现状与趋势专题报告
人工智能·科技·业界资讯
人工智能培训7 小时前
卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能·神经网络·cnn
YIN_尹8 小时前
目标检测模型量化加速在 openEuler 上的实现
人工智能·目标检测·计算机视觉
mys55188 小时前
杨建允:企业应对AI搜索趋势的实操策略
人工智能·geo·ai搜索优化·ai引擎优化
小毅&Nora8 小时前
【人工智能】【深度学习】 ⑦ 从零开始AI学习路径:从Python到大模型的实战指南
人工智能·深度学习·学习