奥比中光opencv显示可见光图片

在奥比中光提供的sdk中没有直接使用opencv读取显示视频流的功能,参照案例与代码写了一个opencv显示奥比中光可见光流的cpp代码

代码:

python 复制代码
#include "libobsensor/hpp/Pipeline.hpp"
#include "libobsensor/hpp/Error.hpp"

const char *metaDataTypes[] = { "TIMESTAMP",
                                "SENSOR_TIMESTAMP",
                                "FRAME_NUMBER",
                                "AUTO_EXPOSURE",
                                "EXPOSURE",
                                "GAIN",
                                "AUTO_WHITE_BALANCE",
                                "WHITE_BALANCE",
                                "BRIGHTNESS",
                                "CONTRAST",
                                "SATURATION",
                                "SHARPNESS",
                                "BACKLIGHT_COMPENSATION",
                                "HUE",
                                "GAMMA",
                                "POWER_LINE_FREQUENCY",
                                "LOW_LIGHT_COMPENSATION",
                                "MANUAL_WHITE_BALANCE",
                                "ACTUAL_FRAME_RATE",
                                "FRAME_RATE",
                                "AE_ROI_LEFT",
                                "AE_ROI_TOP",
                                "AE_ROI_RIGHT",
                                "AE_ROI_BOTTOM",
                                "EXPOSURE_PRIORITY",
                                "HDR_SEQUENCE_NAME",
                                "HDR_SEQUENCE_SIZE",
                                "HDR_SEQUENCE_INDEX",
                                "LASER_POWER",
                                "LASER_POWER_LEVEL",
                                "LASER_STATUS",
                                "GPIO_INPUT_DATA" };

int main(int argc, char **argv) try {
    // Create a pipeline with default device
    ob::Pipeline pipe;

    // Configure which streams to enable or disable for the Pipeline by creating a Config
    std::shared_ptr<ob::Config> config = std::make_shared<ob::Config>();
    config->enableVideoStream(OB_STREAM_COLOR);

    // Start the pipeline with config
    pipe.start(config);
    auto currentProfile = pipe.getEnabledStreamProfileList()->getProfile(0)->as<ob::VideoStreamProfile>();
    cv::Mat                                 rstMat;
    // Create a window for rendering, and set the resolution of the window

    while(1) {
        // Wait for up to 100ms for a frameset in blocking mode.
        auto frameSet = pipe.waitForFrames(1000);
        if(frameSet == nullptr) {
            continue;
        }

        // get color frame from frameset
        auto colorFrame = frameSet->colorFrame();
        if(colorFrame == nullptr) {
            continue;
        }

        if(colorFrame->type() == OB_FRAME_COLOR) {
            auto videoFrame = colorFrame->as<ob::VideoFrame>();
            switch(videoFrame->format()) {
            case OB_FORMAT_MJPG: {
                cv::Mat rawMat(1, videoFrame->dataSize(), CV_8UC1, videoFrame->data());
                rstMat = cv::imdecode(rawMat, 1);
            } break;
            case OB_FORMAT_NV21: {
                cv::Mat rawMat(videoFrame->height() * 3 / 2, videoFrame->width(), CV_8UC1, videoFrame->data());
                cv::cvtColor(rawMat, rstMat, cv::COLOR_YUV2BGR_NV21);
            } break;
            case OB_FORMAT_YUYV:
            case OB_FORMAT_YUY2: {
                cv::Mat rawMat(videoFrame->height(), videoFrame->width(), CV_8UC2, videoFrame->data());
                cv::cvtColor(rawMat, rstMat, cv::COLOR_YUV2BGR_YUY2);
            } break;
            case OB_FORMAT_RGB: {
                cv::Mat rawMat(videoFrame->height(), videoFrame->width(), CV_8UC3, videoFrame->data());
                cv::cvtColor(rawMat, rstMat, cv::COLOR_RGB2BGR);
            } break;
            case OB_FORMAT_RGBA: {
                cv::Mat rawMat(videoFrame->height(), videoFrame->width(), CV_8UC4, videoFrame->data());
                cv::cvtColor(rawMat, rstMat, cv::COLOR_RGBA2BGRA);
            } break;
            case OB_FORMAT_BGRA: {
                rstMat = cv::Mat(videoFrame->height(), videoFrame->width(), CV_8UC4, videoFrame->data());
            } break;
            case OB_FORMAT_UYVY: {
                cv::Mat rawMat(videoFrame->height(), videoFrame->width(), CV_8UC2, videoFrame->data());
                cv::cvtColor(rawMat, rstMat, cv::COLOR_YUV2BGR_UYVY);
            } break;
            case OB_FORMAT_I420: {
                cv::Mat rawMat(videoFrame->height() * 3 / 2, videoFrame->width(), CV_8UC1, videoFrame->data());
                cv::cvtColor(rawMat, rstMat, cv::COLOR_YUV2BGR_I420);
            } break;
            default:
                break;
                }

        }

        cv::imshow("ccc",rstMat);
        cv::waitKey(100);



        // Render frameset in the window, only color frames are rendered here.

    }

    // Stop the Pipeline, no frame data will be generated
    pipe.stop();

    return 0;
}
catch(ob::Error &e) {
    std::cerr << "function:" << e.getName() << "\nargs:" << e.getArgs() << "\nmessage:" << e.getMessage() << "\ntype:" << e.getExceptionType() << std::endl;
    exit(EXIT_FAILURE);
}
相关推荐
阿珊和她的猫2 小时前
v-scale-scree: 根据屏幕尺寸缩放内容
开发语言·前端·javascript
Moshow郑锴5 小时前
人工智能中的(特征选择)数据过滤方法和包裹方法
人工智能
TY-20255 小时前
【CV 目标检测】Fast RCNN模型①——与R-CNN区别
人工智能·目标检测·目标跟踪·cnn
加班是不可能的,除非双倍日工资6 小时前
css预编译器实现星空背景图
前端·css·vue3
CareyWYR6 小时前
苹果芯片Mac使用Docker部署MinerU api服务
人工智能
失散137 小时前
自然语言处理——02 文本预处理(下)
人工智能·自然语言处理
wyiyiyi7 小时前
【Web后端】Django、flask及其场景——以构建系统原型为例
前端·数据库·后端·python·django·flask
mit6.8247 小时前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
sinat_286945197 小时前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt
gnip7 小时前
vite和webpack打包结构控制
前端·javascript