奥比中光opencv显示可见光图片

在奥比中光提供的sdk中没有直接使用opencv读取显示视频流的功能,参照案例与代码写了一个opencv显示奥比中光可见光流的cpp代码

代码:

python 复制代码
#include "libobsensor/hpp/Pipeline.hpp"
#include "libobsensor/hpp/Error.hpp"

const char *metaDataTypes[] = { "TIMESTAMP",
                                "SENSOR_TIMESTAMP",
                                "FRAME_NUMBER",
                                "AUTO_EXPOSURE",
                                "EXPOSURE",
                                "GAIN",
                                "AUTO_WHITE_BALANCE",
                                "WHITE_BALANCE",
                                "BRIGHTNESS",
                                "CONTRAST",
                                "SATURATION",
                                "SHARPNESS",
                                "BACKLIGHT_COMPENSATION",
                                "HUE",
                                "GAMMA",
                                "POWER_LINE_FREQUENCY",
                                "LOW_LIGHT_COMPENSATION",
                                "MANUAL_WHITE_BALANCE",
                                "ACTUAL_FRAME_RATE",
                                "FRAME_RATE",
                                "AE_ROI_LEFT",
                                "AE_ROI_TOP",
                                "AE_ROI_RIGHT",
                                "AE_ROI_BOTTOM",
                                "EXPOSURE_PRIORITY",
                                "HDR_SEQUENCE_NAME",
                                "HDR_SEQUENCE_SIZE",
                                "HDR_SEQUENCE_INDEX",
                                "LASER_POWER",
                                "LASER_POWER_LEVEL",
                                "LASER_STATUS",
                                "GPIO_INPUT_DATA" };

int main(int argc, char **argv) try {
    // Create a pipeline with default device
    ob::Pipeline pipe;

    // Configure which streams to enable or disable for the Pipeline by creating a Config
    std::shared_ptr<ob::Config> config = std::make_shared<ob::Config>();
    config->enableVideoStream(OB_STREAM_COLOR);

    // Start the pipeline with config
    pipe.start(config);
    auto currentProfile = pipe.getEnabledStreamProfileList()->getProfile(0)->as<ob::VideoStreamProfile>();
    cv::Mat                                 rstMat;
    // Create a window for rendering, and set the resolution of the window

    while(1) {
        // Wait for up to 100ms for a frameset in blocking mode.
        auto frameSet = pipe.waitForFrames(1000);
        if(frameSet == nullptr) {
            continue;
        }

        // get color frame from frameset
        auto colorFrame = frameSet->colorFrame();
        if(colorFrame == nullptr) {
            continue;
        }

        if(colorFrame->type() == OB_FRAME_COLOR) {
            auto videoFrame = colorFrame->as<ob::VideoFrame>();
            switch(videoFrame->format()) {
            case OB_FORMAT_MJPG: {
                cv::Mat rawMat(1, videoFrame->dataSize(), CV_8UC1, videoFrame->data());
                rstMat = cv::imdecode(rawMat, 1);
            } break;
            case OB_FORMAT_NV21: {
                cv::Mat rawMat(videoFrame->height() * 3 / 2, videoFrame->width(), CV_8UC1, videoFrame->data());
                cv::cvtColor(rawMat, rstMat, cv::COLOR_YUV2BGR_NV21);
            } break;
            case OB_FORMAT_YUYV:
            case OB_FORMAT_YUY2: {
                cv::Mat rawMat(videoFrame->height(), videoFrame->width(), CV_8UC2, videoFrame->data());
                cv::cvtColor(rawMat, rstMat, cv::COLOR_YUV2BGR_YUY2);
            } break;
            case OB_FORMAT_RGB: {
                cv::Mat rawMat(videoFrame->height(), videoFrame->width(), CV_8UC3, videoFrame->data());
                cv::cvtColor(rawMat, rstMat, cv::COLOR_RGB2BGR);
            } break;
            case OB_FORMAT_RGBA: {
                cv::Mat rawMat(videoFrame->height(), videoFrame->width(), CV_8UC4, videoFrame->data());
                cv::cvtColor(rawMat, rstMat, cv::COLOR_RGBA2BGRA);
            } break;
            case OB_FORMAT_BGRA: {
                rstMat = cv::Mat(videoFrame->height(), videoFrame->width(), CV_8UC4, videoFrame->data());
            } break;
            case OB_FORMAT_UYVY: {
                cv::Mat rawMat(videoFrame->height(), videoFrame->width(), CV_8UC2, videoFrame->data());
                cv::cvtColor(rawMat, rstMat, cv::COLOR_YUV2BGR_UYVY);
            } break;
            case OB_FORMAT_I420: {
                cv::Mat rawMat(videoFrame->height() * 3 / 2, videoFrame->width(), CV_8UC1, videoFrame->data());
                cv::cvtColor(rawMat, rstMat, cv::COLOR_YUV2BGR_I420);
            } break;
            default:
                break;
                }

        }

        cv::imshow("ccc",rstMat);
        cv::waitKey(100);



        // Render frameset in the window, only color frames are rendered here.

    }

    // Stop the Pipeline, no frame data will be generated
    pipe.stop();

    return 0;
}
catch(ob::Error &e) {
    std::cerr << "function:" << e.getName() << "\nargs:" << e.getArgs() << "\nmessage:" << e.getMessage() << "\ntype:" << e.getExceptionType() << std::endl;
    exit(EXIT_FAILURE);
}
相关推荐
Jamence7 分钟前
多模态大语言模型arxiv论文略读(七十六)
人工智能·语言模型·自然语言处理
与火星的孩子对话9 分钟前
Unity3D开发AI桌面精灵/宠物系列 【六】 人物模型 语音口型同步 LipSync 、梅尔频谱MFCC技术、支持中英文自定义编辑- 基于 C# 语言开发
人工智能·unity·c#·游戏引擎·宠物·lipsync
AndrewHZ14 分钟前
【图像处理基石】OpenCV中都有哪些图像增强的工具?
图像处理·opencv·算法·计算机视觉·滤波·图像增强·颜色科学
Data-Miner19 分钟前
35页AI应用PPT《DeepSeek如何赋能职场应用》DeepSeek本地化部署与应用案例合集
人工智能
KangkangLoveNLP20 分钟前
Llama:开源的急先锋
人工智能·深度学习·神经网络·算法·机器学习·自然语言处理·llama
白熊18825 分钟前
【通用智能体】Serper API 详解:搜索引擎数据获取的核心工具
人工智能·搜索引擎·大模型
云卓SKYDROID34 分钟前
无人机屏蔽与滤波技术模块运行方式概述!
人工智能·无人机·航电系统·科普·云卓科技
繁依Fanyi38 分钟前
ImgShrink:摄影暗房里的在线图片压缩工具开发记
开发语言·前端·codebuddy首席试玩官
卓律涤43 分钟前
【找工作系列①】【大四毕业】【复习】巩固JavaScript,了解ES6。
开发语言·前端·javascript·笔记·程序人生·职场和发展·es6
小oo呆1 小时前
【自然语言处理与大模型】向量数据库技术
数据库·人工智能·自然语言处理