机器学习基础概念(3)

小小考一下大家前两节的内容(坏笑)

我们如何评判一个机器学习模型的性能呢? 通常是判断它的泛化能力(对于未知数据的处理能力)

那么对于泛化能力是否有一个标准,比如在未知的1万个数据中,泛化能力 模型一90% > 模型二80% , 我们能说模型一就比模型二好吗? 根据NFL原则(没有绝对最好的),我们可以知道,刚刚那句话是不对的,比如对A来说,他需要前100个好就行,其他不重要,但B需要前10000个好,我们需要对他们进行定制不同的模型。

进入正题,我们手中没有没见过的数据(unseen instance),所以我们只能用已知的数据来调试模型参数,训练模型模型并模拟未知的数据来测试模型性能

调试模型就是用验证集来调试参数(这个在这篇文章的后面讲)。

训练模型就是用训练集。

测试模型就是用测试集。

这个时候就会出现两个事情:过拟合和欠拟合。

过拟合:模型对于训练数据的特征进行过度解析,导致出现不符合该问题一般特征的判断。

欠拟合:模型对于训练数据的特征解析不够,导致没有全面了解该问题一般特征,无法做出正确判断。

下图可以很好地表现

上面是直观表示,两条线,一个是真实训练效果,这个是我们训练出来出来对于未来数据的效果,实际上是先欠拟合,之后越来越好,再之后过拟合。表面训练效果就是对于训练集表现出来的表面效果,是看起来越来越好的,但是实际后面已经出现过拟合了。

之后我们需要探讨一下模型选择方面的事,有三个问题

评估方法--如何获得评测结果,获得什么样的评测结果

性能度量--如何评估性能优劣,怎么判断需要什么性能

比较检验--如何判断实质差别,用什么标准比较模型的差别

OK,这节就这样

相关推荐
lihuayong18 分钟前
LangGraph React智能体 - 推理与行动的完美结合
人工智能·langgraph·react 智能体
机器之心20 分钟前
Meta用40万个GPU小时做了一个实验,只为弄清强化学习Scaling Law
人工智能·openai
Mr.看海23 分钟前
机器学习鼻祖级算法——使用SVM实现多分类及Python实现
算法·机器学习·支持向量机
曾经的三心草24 分钟前
OpenCV5-图像特征harris-sift-特征匹配-图像全景拼接-答题卡识别判卷
人工智能·opencv·计算机视觉
慧星云37 分钟前
魔多 AI 支持 Wan 系列在线训练 :解锁视频生成新高度
人工智能
麻辣兔变形记44 分钟前
Solidity 合约超限问题及优化策略:以 FHEFactory 为例
人工智能·区块链
渡我白衣1 小时前
未来的 AI 操作系统(二)——世界即界面:自然语言成为新的人机交互协议
人工智能·语言模型·人机交互
墨利昂1 小时前
词向量:自然语言处理技术体系的核心基石
人工智能·自然语言处理
格林威2 小时前
可见光工业相机半导体制造领域中的应用
图像处理·人工智能·数码相机·计算机视觉·视觉检测·制造·工业相机
星期天要睡觉2 小时前
计算机视觉(opencv)——基于 MediaPipe 人体姿态检测
人工智能·opencv·计算机视觉