机器学习基础概念(3)

小小考一下大家前两节的内容(坏笑)

我们如何评判一个机器学习模型的性能呢? 通常是判断它的泛化能力(对于未知数据的处理能力)

那么对于泛化能力是否有一个标准,比如在未知的1万个数据中,泛化能力 模型一90% > 模型二80% , 我们能说模型一就比模型二好吗? 根据NFL原则(没有绝对最好的),我们可以知道,刚刚那句话是不对的,比如对A来说,他需要前100个好就行,其他不重要,但B需要前10000个好,我们需要对他们进行定制不同的模型。

进入正题,我们手中没有没见过的数据(unseen instance),所以我们只能用已知的数据来调试模型参数,训练模型模型并模拟未知的数据来测试模型性能

调试模型就是用验证集来调试参数(这个在这篇文章的后面讲)。

训练模型就是用训练集。

测试模型就是用测试集。

这个时候就会出现两个事情:过拟合和欠拟合。

过拟合:模型对于训练数据的特征进行过度解析,导致出现不符合该问题一般特征的判断。

欠拟合:模型对于训练数据的特征解析不够,导致没有全面了解该问题一般特征,无法做出正确判断。

下图可以很好地表现

上面是直观表示,两条线,一个是真实训练效果,这个是我们训练出来出来对于未来数据的效果,实际上是先欠拟合,之后越来越好,再之后过拟合。表面训练效果就是对于训练集表现出来的表面效果,是看起来越来越好的,但是实际后面已经出现过拟合了。

之后我们需要探讨一下模型选择方面的事,有三个问题

评估方法--如何获得评测结果,获得什么样的评测结果

性能度量--如何评估性能优劣,怎么判断需要什么性能

比较检验--如何判断实质差别,用什么标准比较模型的差别

OK,这节就这样

相关推荐
带娃的IT创业者10 分钟前
机器学习实战(8):降维技术——主成分分析(PCA)
人工智能·机器学习·分类·聚类
调皮的芋头34 分钟前
iOS各个证书生成细节
人工智能·ios·app·aigc
饮长安千年月2 小时前
Linksys WRT54G路由器溢出漏洞分析–运行环境修复
网络·物联网·学习·安全·机器学习
flying robot3 小时前
人工智能基础之数学基础:01高等数学基础
人工智能·机器学习
Moutai码农3 小时前
机器学习-生命周期
人工智能·python·机器学习·数据挖掘
188_djh3 小时前
# 10分钟了解DeepSeek,保姆级部署DeepSeek到WPS,实现AI赋能
人工智能·大语言模型·wps·ai技术·ai应用·deepseek·ai知识
Jackilina_Stone3 小时前
【DL】浅谈深度学习中的知识蒸馏 | 输出层知识蒸馏
人工智能·深度学习·机器学习·蒸馏
bug404_4 小时前
分布式大语言模型服务引擎vLLM论文解读
人工智能·分布式·语言模型
Logout:4 小时前
[AI]docker封装包含cuda cudnn的paddlepaddle PaddleOCR
人工智能·docker·paddlepaddle
OJAC近屿智能4 小时前
苹果新品今日发布,AI手机市场竞争加剧,近屿智能专注AI人才培养
大数据·人工智能·ai·智能手机·aigc·近屿智能