机器学习基础概念(3)

小小考一下大家前两节的内容(坏笑)

我们如何评判一个机器学习模型的性能呢? 通常是判断它的泛化能力(对于未知数据的处理能力)

那么对于泛化能力是否有一个标准,比如在未知的1万个数据中,泛化能力 模型一90% > 模型二80% , 我们能说模型一就比模型二好吗? 根据NFL原则(没有绝对最好的),我们可以知道,刚刚那句话是不对的,比如对A来说,他需要前100个好就行,其他不重要,但B需要前10000个好,我们需要对他们进行定制不同的模型。

进入正题,我们手中没有没见过的数据(unseen instance),所以我们只能用已知的数据来调试模型参数,训练模型模型并模拟未知的数据来测试模型性能

调试模型就是用验证集来调试参数(这个在这篇文章的后面讲)。

训练模型就是用训练集。

测试模型就是用测试集。

这个时候就会出现两个事情:过拟合和欠拟合。

过拟合:模型对于训练数据的特征进行过度解析,导致出现不符合该问题一般特征的判断。

欠拟合:模型对于训练数据的特征解析不够,导致没有全面了解该问题一般特征,无法做出正确判断。

下图可以很好地表现

上面是直观表示,两条线,一个是真实训练效果,这个是我们训练出来出来对于未来数据的效果,实际上是先欠拟合,之后越来越好,再之后过拟合。表面训练效果就是对于训练集表现出来的表面效果,是看起来越来越好的,但是实际后面已经出现过拟合了。

之后我们需要探讨一下模型选择方面的事,有三个问题

评估方法--如何获得评测结果,获得什么样的评测结果

性能度量--如何评估性能优劣,怎么判断需要什么性能

比较检验--如何判断实质差别,用什么标准比较模型的差别

OK,这节就这样

相关推荐
XinZong1 小时前
【AI开源项目】OneAPI -核心概念、特性、优缺点以及如何在本地和服务器上进行部署!
人工智能·开源
迷路爸爸1801 小时前
深入理解Allan方差:用体重数据分析误差的时间尺度与稳定性
机器学习·数据分析·概率论
机器之心1 小时前
Runway CEO:AI公司的时代已经结束了
人工智能·后端
T0uken2 小时前
【机器学习】过拟合与欠拟合
人工智能·机器学习
即兴小索奇2 小时前
GPT-4V 是什么?
人工智能
机器学习之心3 小时前
GCN+BiLSTM多特征输入时间序列预测(Pytorch)
人工智能·pytorch·python·gcn+bilstm
码农-阿甘3 小时前
小牛视频翻译 ( 视频翻译 字幕翻译 字幕转语音 人声分离)
人工智能
黑龙江亿林等级保护测评3 小时前
等保行业如何选择核实的安全防御技术
网络·人工智能·python·安全·web安全·智能路由器·ddos
ai产品老杨3 小时前
深度学习模型量化原理
开发语言·人工智能·python·深度学习·安全·音视频
马甲是掉不了一点的<.<3 小时前
计算机视觉常用数据集Cityscapes的介绍、下载、转为YOLO格式进行训练
人工智能·yolo·目标检测·计算机视觉·计算机视觉数据集