机器学习中的朴素贝叶斯

朴素贝叶斯

1、概述+推导

先验概率:基于统计的概率,是基于以往历史经验和分析得到的结果,不需要依赖当前发生的条件。

后验概率:从条件概率而来,由因推果,基于当下发生的事件计算之后的概率,依赖于当前发生的条件。

条件概率:记事件A发生的概率为P(A),事件B发生的概率为P(B),则B事件发生的前提下,A事件发生的概率为P(A|B)。
P ( A ∣ B ) = P ( A B ) P ( B ) P(A|B)=\frac{P(AB)}{P(B)} P(A∣B)=P(B)P(AB)

贝叶斯公式就是基于条件概率通过P(B|A)来求解P(A|B):
P ( A ∣ B ) = P ( B ∣ A ) × P ( A ) P ( B ) P(A|B)=\frac{P(B|A)×P(A)}{P(B)} P(A∣B)=P(B)P(B∣A)×P(A)

而朴素贝叶斯就是假设事件(特征)之间没有联系,给定训练数据集,其中每个样本x都包括n维特征,也就是x={x1,x2,x3,...,xn},有k种类别即y={y1,y2,y3,...,yk},对于给定的样本,判断属于什么标记的类别,根据贝叶斯定理可以获得P(yk|x)
P ( y k ∣ x ) = P ( x ∣ y k ) × P ( y k ) ∑ k P ( x ∣ y k ) × P ( y k ) P(y_k|x)=\frac{P(x|y_k)×P(y_k)}{\sum_kP(x|y_k)×P(y_k)} P(yk∣x)=∑kP(x∣yk)×P(yk)P(x∣yk)×P(yk)

而朴素贝叶斯对条件概率分布做出了独立性的假设,所以每个特征相互独立,此时条件概率可以转化为:
P ( x ∣ y k ) = P ( x 1 , x 2 , . . . , x n ∣ y k ) = ∏ i = 1 n P ( x i ∣ y k ) P(x|y_k)=P(x_1,x_2,...,x_n|y_k)=\prod_{i=1}^{n}P(x_i|y_k) P(x∣yk)=P(x1,x2,...,xn∣yk)=i=1∏nP(xi∣yk)

将此式带入到上述的贝叶斯公式中得出:
P ( y k ∣ x ) = P ( y k ) × ∏ i = 1 n P ( x i ∣ y k ) ∑ k P ( y k ) × ∏ i = 1 n P ( x i ∣ y k ) P(y_k|x)=\frac{P(y_k)×\prod_{i=1}^{n}P(x_i|y_k)}{\sum_kP(y_k)×\prod_{i=1}^{n}P(x_i|y_k)} P(yk∣x)=∑kP(yk)×∏i=1nP(xi∣yk)P(yk)×∏i=1nP(xi∣yk)
适用范围:

  • 特征之间是条件独立的情况下,否则分类效果不好,朴素就是指条件独立
  • 主要被使用在文档分类中

常见模型:

  • 高斯模型:处理特征是连续型变量的情况
  • 多项式模型:最常见,要求特征是离散数据
  • 伯努利模型:要求特征是离散的,且为布尔类型,即true和false,或者1和0

2、拉普拉斯平滑

主要是为了解决零概率的情况,所以在分子和分母分别加上一个数值,每个分量x的计数加一造成的概率变化几乎可以忽略不记,却可以有效的避免零概率事件。
P ( A ∣ B ) = N i + α N + α m α :拉普拉斯平滑系数,一般指定为 1 N i : A 中符合条件 B 的样本数量 N :符合条件 C 的所有样本数量 m :所有独立样本的总数 P(A|B)=\frac{N_i+α}{N+αm}\\ α:拉普拉斯平滑系数,一般指定为1\\ N_i:A中符合条件B的样本数量\\ N:符合条件C的所有样本数量\\ m:所有独立样本的总数 P(A∣B)=N+αmNi+αα:拉普拉斯平滑系数,一般指定为1Ni:A中符合条件B的样本数量N:符合条件C的所有样本数量m:所有独立样本的总数

3、相关api

导包:

from sklearn.naive_bayes import MultinomialNB

调用:

MultinomialNB(alpha = 1.0)

alpha:拉普拉斯平滑系数

4、优缺点

优点:

  • 朴素贝叶斯模型有稳定的分类效率。
  • 对小规模的数据表现很好,能处理多分类任务,适合增量式训练,尤其是数据量超出内存时,可以一批批的去增量训练。
  • 对缺失数据不太敏感,算法也比较简单,常用于文本分类。

缺点:

  • 需要知道先验概率,且先验概率很多时候取决于假设,假设的模型可以有很多种,因此在某些时候会由于假设的先验模型的原因导致预测效果不佳。
  • 对输入数据的表达形式很敏感(离散、连续,值极大极小之类的)。
相关推荐
北京领雁科技3 分钟前
领雁科技反洗钱案例白皮书暨人工智能在反洗钱系统中的深度应用
人工智能·科技·安全
落叶,听雪7 分钟前
河南建站系统哪个好
大数据·人工智能·python
清月电子26 分钟前
杰理AC109N系列AC1082 AC1074 AC1090 芯片停产替代及资料说明
人工智能·单片机·嵌入式硬件·物联网
Dev7z28 分钟前
非线性MPC在自动驾驶路径跟踪与避障控制中的应用及Matlab实现
人工智能·matlab·自动驾驶
七月shi人37 分钟前
AI浪潮下,前端路在何方
前端·人工智能·ai编程
橙汁味的风1 小时前
1隐马尔科夫模型HMM与条件随机场CRF
人工智能·深度学习·机器学习
极客小云1 小时前
【生物医学NLP信息抽取:药物识别、基因识别与化学物质实体识别教程与应用】
python·机器学习·nlp
itwangyang5201 小时前
AIDD-人工智能药物设计-AI 制药编码之战:预测癌症反应,选对方法是关键
人工智能
蓝桉~MLGT1 小时前
Ai-Agent学习历程—— 阶段1——环境的选择、Pydantic基座、Jupyter Notebook的使用
人工智能·学习·jupyter
武子康2 小时前
大数据-197 K折交叉验证实战:sklearn 看均值/方差,选更稳的 KNN 超参
大数据·后端·机器学习