Linux的Spark 环境部署

前言:需自行准备hadoop集群

  1. Spark 是一款分布式内存计算引擎, 可以支撑海量数据的分布式计算。 Spark 在大数据体系是明星产品, 作为最新一代的综合计算引擎, 支持离线计算和实 时计算。 在大数据领域广泛应用, 是目前世界上使用最多的大数据分布式计算引擎。 我们将基于前面构建的 Hadoop 集群, 部署 Spark Standalone 集群。

2.安装

spark镜像安装https://mirrors.aliyun.com/apache/spark/spark-3.5.3/?spm=a2c6h.25603864.0.0.12d22104b1PXSX

3.解压: 命令: tar -zxvf spark-3.5.3-bin-hadoop3.tgz -C /export/server/

4.创建软连接 命令: ln -s /export/server/spark-3.5.3-bin-hadoop3 /export/server/spark

5.改名

命令: cd /export/server/spark/conf

mv spark-env.sh.template spark-env.sh

mv workers.template workers

6.修改配置文件, spark-env.sh

加入:

JAVA_HOME=/export/server/jdk

HADOOP_CONF_DIR=/export/server/hadoop/etc/hadoop

YARN_CONF_DIR=/export/server/hadoop/etc/hadoop

export SPARK_MASTER_HOST=wtk

export SPARK_MASTER_PORT=7077

SPARK_MASTER_WEBUI_PORT=8080

SPARK_WORKER_CORES=1

SPARK_WORKER_MEMORY=1g

7.修改配置文件,workers

清空加入:

各个主机名

8.分发到各个主机

命令 scp -r /export/server/spark-3.5.3-bin-hadoop3 wtk1:/export/server/

部分文件:

9.给分配主机创建软连接

命令: ln -s /export/server/spark-3.5.3-bin-hadoop3 /export/server/spark

10.启动spark

命令: /export/server/spark/sbin/start-all.sh

11.验证:

打开spark监控页面

主机ip:8081

我的是192.168.10.130:8081

提交测试任务:(执行以下脚本,主机名自行修改):

/export/server/spark/bin/spark-submit --master spark://wtk:7077 --class org.apache.spark.examples.SparkPi /export/server/spark-3.5.3-bin-hadoop3/examples/jars/spark-examples_2.12-3.5.3.jar examples_2.11-2.4.5.jark

网页刷新,发现脚本已经执行完毕

此时显示应用程序完成

这就是spark的安装部署了

相关推荐
瞎胡侃14 分钟前
Spark读取Apollo配置
大数据·spark·apollo
悻运17 分钟前
如何配置Spark
大数据·分布式·spark
懒惰的橘猫28 分钟前
Spark集群搭建之Yarn模式
大数据·分布式·spark
光而不耀@lgy29 分钟前
C++初登门槛
linux·开发语言·网络·c++·后端
偶尔微微一笑39 分钟前
AI网络渗透kali应用(gptshell)
linux·人工智能·python·自然语言处理·编辑器
2401_8242568642 分钟前
Spark-Streaming
大数据·分布式·spark
Run1.1 小时前
深入解析 Linux 中动静态库的加载机制:从原理到实践
linux·运维·服务器
胡耀超1 小时前
附1:深度解读:《金融数据安全 数据安全分级指南》——数据分类的艺术专栏系列
大数据·金融·数据治理·生命周期·数据分类·政策法规
合新通信 | 让光不负所托1 小时前
【合新通信】浸没式液冷光模块与冷媒兼容性测试技术报告
大数据·网络·光纤通信
The Mr.Nobody1 小时前
STM32MPU开发之旅:从零开始构建嵌入式Linux镜像
linux·stm32·嵌入式硬件