【基于docker的深度学习训练环境】关键步骤记录

最近给公司搭建了一个小型的深度学习环境,实现了多人通过SSH对GPU资源的利用,下面对一些关键架构和易用性部分进行记录。

一、整体软硬件框架

1、硬件配置,采用的双GPU的方案,两块消费级显卡。

2、应用层架构

宿主机系统为ubuntu22 采用ssh+docker+路径映射的形式,docker的容器主要提供训练相关环境,实际的代码保存在训练服务器的硬盘上,通过服务器本身的网络与Gitlab同步,数据部分也挂载到训练服务硬盘上。数据和代码路径一同映射到容器中。

数据服务器是只读的,做存档之用,需要copy到训练服务器上,进行处理和训练加载。

二、GPU框架

这里套用Nvidia的图

在宿主机中安装gpu的driver,nvidia-container-toolkit。在容器中安装cuda-toolkit。

三、docker的几个易用性

1、初始环境获取。

我使用的是阿里云提供的初始镜像。https://cr.console.aliyun.com/cn-hangzhou/instances/artifact 按需选择即可,我这里选用了ubuntu22+py310+pytorch23+cu12的镜像

2、镜像的保存与导入。

cpp 复制代码
#1、导出
docker export container_id > /path/to/save/container.tar
#2、导入
docker import - newImage <  /path/to/save/container.tar

3、完成初始环境后有几个易用性可进行配置

1)、ssh开机启动

2)、宿主机与容器之间的路径映射

3)、ssh的端口映射

4)、容器中的时间配置成和宿主机一样(非实时同步)

其中1)需要在容器内配置完再保存成镜像后,重新载入。

2)和3)需要在创建容器时执行。

4)可以在容器运行时执行。

2)3)4)相关指令如下:

cpp 复制代码
docker run -p 2024:22 -it --gpus all -v /home/user/workspace:/home/workspace imageName /bin/bash
# 将ssh的端口映射到2024
# 在该容器中使用全部的gpu资源
# 将宿主机user的workspace映射到容器中的workspace
cpp 复制代码
docker cp /usr/share/zoneinfo/Asia/Shanghai ContainerID:/usr/share/zoneinfo/Asia/Shanghai
docker cp /etc/localtime ContainerID:/etc/localtime
# 将宿主机的时区信息copy到容器中
# 将宿主机的当前时间信息copy到容器中

三、总结

硬件虚拟化的基本步骤是一样的,一层是基本硬件驱动,一层是虚拟化管理。

对于深度学习环境而言,有两大部分需要完成上述管理,简单划分为CPU和GPU,其中CPU又包含了内存和硬盘等。

两者都有其对应的工具,简单画图示意下:

相关推荐
Blossom.1188 小时前
基于Embedding+图神经网络的开源软件供应链漏洞检测:从SBOM到自动修复的完整实践
人工智能·分布式·深度学习·神经网络·copilot·开源软件·embedding
V1ncent Chen9 小时前
机器是如何“洞察“世界的?:深度学习
人工智能·深度学习
java1234_小锋11 小时前
Transformer 大语言模型(LLM)基石 - Transformer架构详解 - 掩码机制(Masked)原理介绍以及算法实现
深度学习·语言模型·transformer
一条懒鱼66612 小时前
K8S-特殊容器
云原生·容器·kubernetes
李小星同志13 小时前
DPO,PPO,GRPO的学习
人工智能·深度学习·学习
范男14 小时前
Qwen3-VL + LLama-Factory进行针对Grounding任务LoRA微调
人工智能·深度学习·计算机视觉·transformer·llama
金融小师妹15 小时前
美联储议息夜:基于多智能体决策分歧模型的“鹰派降息”推演
人工智能·深度学习·1024程序员节
求梦82015 小时前
Java:Windows家庭中文版的Docker下载安装
java·windows·docker
❀͜͡傀儡师15 小时前
docker一键部署Flatnotes笔记工具
笔记·docker·容器
Study99616 小时前
科普专栏|大语言模型:理解与生成语言的人工智能
人工智能·深度学习·机器学习·大模型·agent·大模型微调·大模型应用开发