【基于docker的深度学习训练环境】关键步骤记录

最近给公司搭建了一个小型的深度学习环境,实现了多人通过SSH对GPU资源的利用,下面对一些关键架构和易用性部分进行记录。

一、整体软硬件框架

1、硬件配置,采用的双GPU的方案,两块消费级显卡。

2、应用层架构

宿主机系统为ubuntu22 采用ssh+docker+路径映射的形式,docker的容器主要提供训练相关环境,实际的代码保存在训练服务器的硬盘上,通过服务器本身的网络与Gitlab同步,数据部分也挂载到训练服务硬盘上。数据和代码路径一同映射到容器中。

数据服务器是只读的,做存档之用,需要copy到训练服务器上,进行处理和训练加载。

二、GPU框架

这里套用Nvidia的图

在宿主机中安装gpu的driver,nvidia-container-toolkit。在容器中安装cuda-toolkit。

三、docker的几个易用性

1、初始环境获取。

我使用的是阿里云提供的初始镜像。https://cr.console.aliyun.com/cn-hangzhou/instances/artifact 按需选择即可,我这里选用了ubuntu22+py310+pytorch23+cu12的镜像

2、镜像的保存与导入。

cpp 复制代码
#1、导出
docker export container_id > /path/to/save/container.tar
#2、导入
docker import - newImage <  /path/to/save/container.tar

3、完成初始环境后有几个易用性可进行配置

1)、ssh开机启动

2)、宿主机与容器之间的路径映射

3)、ssh的端口映射

4)、容器中的时间配置成和宿主机一样(非实时同步)

其中1)需要在容器内配置完再保存成镜像后,重新载入。

2)和3)需要在创建容器时执行。

4)可以在容器运行时执行。

2)3)4)相关指令如下:

cpp 复制代码
docker run -p 2024:22 -it --gpus all -v /home/user/workspace:/home/workspace imageName /bin/bash
# 将ssh的端口映射到2024
# 在该容器中使用全部的gpu资源
# 将宿主机user的workspace映射到容器中的workspace
cpp 复制代码
docker cp /usr/share/zoneinfo/Asia/Shanghai ContainerID:/usr/share/zoneinfo/Asia/Shanghai
docker cp /etc/localtime ContainerID:/etc/localtime
# 将宿主机的时区信息copy到容器中
# 将宿主机的当前时间信息copy到容器中

三、总结

硬件虚拟化的基本步骤是一样的,一层是基本硬件驱动,一层是虚拟化管理。

对于深度学习环境而言,有两大部分需要完成上述管理,简单划分为CPU和GPU,其中CPU又包含了内存和硬盘等。

两者都有其对应的工具,简单画图示意下:

相关推荐
Pyeako4 小时前
深度学习--BP神经网络&梯度下降&损失函数
人工智能·python·深度学习·bp神经网络·损失函数·梯度下降·正则化惩罚
shandianchengzi4 小时前
【记录】Tailscale|部署 Tailscale 到 linux 主机或 Docker 上
linux·运维·docker·tailscale
哥布林学者5 小时前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入(四)分层 softmax 和负采样
深度学习·ai
肉肉心很软6 小时前
使用onlyoffice实现文件预览编辑 + Docker一键部署流程
运维·docker·容器
-大头.6 小时前
Docker实战:构建高性能MySQL主从复制集群(读写分离)
mysql·docker·容器
LuiChun6 小时前
Docker Compose 容器服务查询与文件查看操作指南(Windows Docker Desktop 版)【一】
linux·运维·windows·docker·容器
Yeats_Liao7 小时前
开源生态资源:昇腾社区ModelZoo与DeepSeek的最佳实践路径
python·深度学习·神经网络·架构·开源
goodlook01237 小时前
安装最新版本docker-26.1.4
运维·docker·容器
❀͜͡傀儡师8 小时前
docker安装部署PostgreSQL带有pgvector扩展向量数据(高维数组)
docker·postgresql·容器·pgvector
IT_Octopus8 小时前
Docker 镜像打的包有1.3个G 多阶段构建缩小镜像体积(不算成功)
运维·docker·容器