如何手撸一个自有知识库的RAG系统

RAG通常指的是"Retrieval-Augmented Generation",即"检索增强的生成"。这是一种结合了检索(Retrieval)和生成(Generation)的机器学习模型,通常用于自然语言处理任务,如文本生成、问答系统等。

我们通过一下几个步骤来完成一个基于京东云官网文档的RAG系统

  • 数据收集
  • 建立知识库
  • 向量检索
  • 提示词与模型

数据收集

数据的收集再整个RAG实施过程中无疑是最耗人工的,涉及到收集、清洗、格式化、切分等过程。这里我们使用京东云的官方文档作为知识库的基础。文档格式大概这样:

swift 复制代码
swift代码解读复制代码{
    "content": "DDoS IP高防结合Web应用防火墙方案说明\n=======================\n\n\nDDoS IP高防+Web应用防火墙提供三层到七层安全防护体系,应用场景包括游戏、金融、电商、互联网、政企等京东云内和云外的各类型用户。\n\n\n部署架构\n====\n\n\n[![\"部署架构\"](\"https://jdcloud-portal.oss.cn-north-1.jcloudcs.com/cn/image/Advanced%20Anti-DDoS/Best-Practice02.png\")](\"https://jdcloud-portal.oss.cn-north-1.jcloudcs.com/cn/image/Advanced%20Anti-DDoS/Best-Practice02.png\")  \n\nDDoS IP高防+Web应用防火墙的最佳部署架构如下:\n\n\n* 京东云的安全调度中心,通过DNS解析,将用户域名解析到DDoS IP高防CNAME。\n* 用户正常访问流量和DDoS攻击流量经过DDoS IP高防清洗,回源至Web应用防火墙。\n* 攻击者恶意请求被Web应用防火墙过滤后返回用户源站。\n* Web应用防火墙可以保护任何公网的服务器,包括但不限于京东云,其他厂商的云,IDC等\n\n\n方案优势\n====\n\n\n1. 用户源站在DDoS IP高防和Web应用防火墙之后,起到隐藏源站IP的作用。\n2. CNAME接入,配置简单,减少运维人员工作。\n\n\n",
    "title": "DDoS IP高防结合Web应用防火墙方案说明",
    "product": "DDoS IP高防",
    "url": "https://docs.jdcloud.com/cn/anti-ddos-pro/anti-ddos-pro-and-waf"
}

每条数据是一个包含四个字段的json,这四个字段分别是"content":文档内容;"title":文档标题;"product":相关产品;"url":文档在线地址

向量数据库的选择与Retriever实现

向量数据库是RAG系统的记忆中心。目前市面上开源的向量数据库很多,那个向量库比较好也是见仁见智。本项目中笔者选择则了clickhouse作为向量数据库。选择ck主要有一下几个方面的考虑:

  • ck再langchain社区的集成实现比较好,入库比较平滑
  • 向量查询支持sql,学习成本较低,上手容易
  • 京东云有相关产品且有专业团队支持,用着放心

文档向量化及入库过程

为了简化文档向量化和检索过程,我们使用了longchain的Retriever工具集

首先将文档向量化,代码如下:

ini 复制代码
ini代码解读复制代码from libs.jd_doc_json_loader import JD_DOC_Loader
from langchain_community.document_loaders import DirectoryLoader

root_dir = "/root/jd_docs"
loader = DirectoryLoader(
    '/root/jd_docs', glob="**/*.json", loader_cls=JD_DOC_Loader)
docs = loader.load()

langchain 社区里并没有提供针对特定格式的装载器,为此,我们自定义了JD_DOC_Loader来实现加载过程

python 复制代码
python代码解读复制代码import json
import logging
from pathlib import Path
from typing import Iterator, Optional, Union

from langchain_core.documents import Document

from langchain_community.document_loaders.base import BaseLoader
from langchain_community.document_loaders.helpers import detect_file_encodings

logger = logging.getLogger(__name__)


class JD_DOC_Loader(BaseLoader):
    """Load text file.


    Args:
        file_path: Path to the file to load.

        encoding: File encoding to use. If `None`, the file will be loaded
        with the default system encoding.

        autodetect_encoding: Whether to try to autodetect the file encoding
            if the specified encoding fails.
    """

    def __init__(
        self,
        file_path: Union[str, Path],
        encoding: Optional[str] = None,
        autodetect_encoding: bool = False,
    ):
        """Initialize with file path."""
        self.file_path = file_path
        self.encoding = encoding
        self.autodetect_encoding = autodetect_encoding

    def lazy_load(self) -> Iterator[Document]:
        """Load from file path."""
        text = ""
        from_url = ""
        try:
            with open(self.file_path, encoding=self.encoding) as f:
                doc_data = json.load(f)
                text = doc_data["content"]
                title = doc_data["title"]
                product = doc_data["product"]
                from_url = doc_data["url"]

                # text = f.read()
        except UnicodeDecodeError as e:
            if self.autodetect_encoding:
                detected_encodings = detect_file_encodings(self.file_path)
                for encoding in detected_encodings:
                    logger.debug(f"Trying encoding: {encoding.encoding}")
                    try:
                        with open(self.file_path, encoding=encoding.encoding) as f:
                            text = f.read()
                        break
                    except UnicodeDecodeError:
                        continue
            else:
                raise RuntimeError(f"Error loading {self.file_path}") from e
        except Exception as e:
            raise RuntimeError(f"Error loading {self.file_path}") from e
        # metadata = {"source": str(self.file_path)}
        metadata = {"source": from_url, "title": title, "product": product}
        yield Document(page_content=text, metadata=metadata)

以上代码功能主要是解析json文件,填充Document的page_content字段和metadata字段。

接下来使用langchain 的 clickhouse 向量工具集进行文档入库

ini 复制代码
ini代码解读复制代码import langchain_community.vectorstores.clickhouse as clickhouse
from langchain.embeddings import HuggingFaceEmbeddings

model_kwargs = {"device": "cuda"}
embeddings = HuggingFaceEmbeddings(
    model_name="/root/models/moka-ai-m3e-large", model_kwargs=model_kwargs)

settings = clickhouse.ClickhouseSettings(
    table="jd_docs_m3e_with_url", username="default", password="xxxxxx", host="10.0.1.94")

docsearch = clickhouse.Clickhouse.from_documents(
    docs, embeddings, config=settings)

入库成功后,进行一下检验

ini 复制代码
ini代码解读复制代码import langchain_community.vectorstores.clickhouse as clickhouse
from langchain.embeddings import HuggingFaceEmbeddings

model_kwargs = {"device": "cuda"}~~~~
embeddings = HuggingFaceEmbeddings(
    model_name="/root/models/moka-ai-m3e-large", model_kwargs=model_kwargs)

settings = clickhouse.ClickhouseSettings(
    table="jd_docs_m3e_with_url_splited", username="default", password="xxxx", host="10.0.1.94")
ck_db = clickhouse.Clickhouse(embeddings, config=settings)
ck_retriever = ck_db.as_retriever(
    search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.9})
ck_retriever.get_relevant_documents("如何创建mysql rds")

有了知识库以后,可以构建一个简单的restful 服务,我们这里使用fastapi做这个事儿

ini 复制代码
ini代码解读复制代码from fastapi import FastAPI
from pydantic import BaseModel
from singleton_decorator import singleton
from langchain_community.embeddings import HuggingFaceEmbeddings
import langchain_community.vectorstores.clickhouse as clickhouse
import uvicorn
import json

app = FastAPI()
app = FastAPI(docs_url=None)
app.host = "0.0.0.0"

model_kwargs = {"device": "cuda"}
embeddings = HuggingFaceEmbeddings(
    model_name="/root/models/moka-ai-m3e-large", model_kwargs=model_kwargs)
settings = clickhouse.ClickhouseSettings(
    table="jd_docs_m3e_with_url_splited", username="default", password="xxxx", host="10.0.1.94")
ck_db = clickhouse.Clickhouse(embeddings, config=settings)
ck_retriever = ck_db.as_retriever(
    search_type="similarity", search_kwargs={"k": 3})


class question(BaseModel):
    content: str


@app.get("/")
async def root():
    return {"ok"}


@app.post("/retriever")
async def retriver(question: question):
    global ck_retriever
    result = ck_retriever.invoke(question.content)
    return result


if __name__ == '__main__':
    uvicorn.run(app='retriever_api:app', host="0.0.0.0",
                port=8000, reload=True)

返回结构大概这样:

swift 复制代码
swift代码解读复制代码[
  {
    "page_content": "云缓存 Redis--Redis迁移解决方案\n###RedisSyncer 操作步骤\n####数据校验\n```\nwget   https://github.com/TraceNature/rediscompare/releases/download/v1.0.0/rediscompare-1.0.0-linux-amd64.tar.gz\nrediscompare compare single2single --saddr \"10.0.1.101:6479\" --spassword \"redistest0102\" --taddr \"10.0.1.102:6479\" --tpassword  \"redistest0102\" --comparetimes 3\n\n```\n**Github 地址:** [https://github.com/TraceNature/redissyncer-server](\"https://github.com/TraceNature/redissyncer-server\")",
    "metadata": {
      "product": "云缓存 Redis",
      "source": "https://docs.jdcloud.com/cn/jcs-for-redis/doc-2",
      "title": "Redis迁移解决方案"
    },
    "type": "Document"
  },
  {
    "page_content": "云缓存 Redis--Redis迁移解决方案\n###RedisSyncer 操作步骤\n####数据校验\n```\nwget   https://github.com/TraceNature/rediscompare/releases/download/v1.0.0/rediscompare-1.0.0-linux-amd64.tar.gz\nrediscompare compare single2single --saddr \"10.0.1.101:6479\" --spassword \"redistest0102\" --taddr \"10.0.1.102:6479\" --tpassword  \"redistest0102\" --comparetimes 3\n\n```\n**Github 地址:** [https://github.com/TraceNature/redissyncer-server](\"https://github.com/TraceNature/redissyncer-server\")",
    "metadata": {
      "product": "云缓存 Redis",
      "source": "https://docs.jdcloud.com/cn/jcs-for-redis/doc-2",
      "title": "Redis迁移解决方案"
    },
    "type": "Document"
  },
  {
    "page_content": "云缓存 Redis--Redis迁移解决方案\n###RedisSyncer 操作步骤\n####数据校验\n```\nwget   https://github.com/TraceNature/rediscompare/releases/download/v1.0.0/rediscompare-1.0.0-linux-amd64.tar.gz\nrediscompare compare single2single --saddr \"10.0.1.101:6479\" --spassword \"redistest0102\" --taddr \"10.0.1.102:6479\" --tpassword  \"redistest0102\" --comparetimes 3\n\n```\n**Github 地址:** [https://github.com/TraceNature/redissyncer-server](\"https://github.com/TraceNature/redissyncer-server\")",
    "metadata": {
      "product": "云缓存 Redis",
      "source": "https://docs.jdcloud.com/cn/jcs-for-redis/doc-2",
      "title": "Redis迁移解决方案"
    },
    "type": "Document"
  }
]

返回一个向量距离最小的list

结合模型和prompt,回答问题

为了节约算力资源,我们选择qwen 1.8B模型,一张v100卡刚好可以容纳一个qwen模型和一个m3e-large embedding 模型

  • answer 服务
ini 复制代码
ini代码解读复制代码from fastapi import FastAPI
from pydantic import BaseModel
from langchain_community.llms import VLLM
from transformers import AutoTokenizer
from langchain.prompts import PromptTemplate
import requests
import uvicorn
import json
import logging

app = FastAPI()
app = FastAPI(docs_url=None)
app.host = "0.0.0.0"

logger = logging.getLogger()
logger.setLevel(logging.INFO)
to_console = logging.StreamHandler()
logger.addHandler(to_console)


# load model
# model_name = "/root/models/Llama3-Chinese-8B-Instruct"
model_name = "/root/models/Qwen1.5-1.8B-Chat"
tokenizer = AutoTokenizer.from_pretrained(model_name)
llm_llama3 = VLLM(
    model=model_name,
    tokenizer=tokenizer,
    task="text-generation",
    temperature=0.2,
    do_sample=True,
    repetition_penalty=1.1,
    return_full_text=False,
    max_new_tokens=900,
)

# prompt
prompt_template = """
你是一个云技术专家
使用以下检索到的Context回答问题。
如果不知道答案,就说不知道。
用中文回答问题。
Question: {question}
Context: {context}
Answer: 
"""

prompt = PromptTemplate(
    input_variables=["context", "question"],
    template=prompt_template,
)


def get_context_list(q: str):
    url = "http://10.0.0.7:8000/retriever"
    payload = {"content": q}
    res = requests.post(url, json=payload)
    return res.text


class question(BaseModel):
    content: str


@app.get("/")
async def root():
    return {"ok"}


@app.post("/answer")
async def answer(q: question):
    logger.info("invoke!!!")
    global prompt
    global llm_llama3
    context_list_str = get_context_list(q.content)

    context_list = json.loads(context_list_str)
    context = ""
    source_list = []

    for context_json in context_list:
        context = context+context_json["page_content"]
        source_list.append(context_json["metadata"]["source"])
    p = prompt.format(context=context, question=q.content)
    answer = llm_llama3(p)
    result = {
        "answer": answer,
        "sources": source_list
    }
    return result


if __name__ == '__main__':
    uvicorn.run(app='retriever_api:app', host="0.0.0.0",
                port=8888, reload=True)

代码通过使用Retriever接口查找与问题相似的文档,作为context组合prompt推送给模型生成答案。

主要服务就绪后可以开始画一张脸了,使用gradio做个简易对话界面

  • gradio 服务
ini 复制代码
ini代码解读复制代码import json
import gradio as gr
import requests


def greet(name, intensity):
    return "Hello, " + name + "!" * int(intensity)


def answer(question):
    url = "http://127.0.0.1:8888/answer"
    payload = {"content": question}
    res = requests.post(url, json=payload)
    res_json = json.loads(res.text)
    return [res_json["answer"], res_json["sources"]]


demo = gr.Interface(
    fn=answer,
    # inputs=["text", "slider"],
    inputs=[gr.Textbox(label="question", lines=5)],
    # outputs=[gr.TextArea(label="answer", lines=5),
    #          gr.JSON(label="urls", value=list)]
    outputs=[gr.Markdown(label="answer"),
             gr.JSON(label="urls", value=list)]
)


demo.launch(server_name="0.0.0.0")
那么,如何系统的去学习大模型LLM?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包 》,扫码获取~

篇幅有限,部分资料如下:

👉LLM大模型学习指南+路线汇总👈

💥大模型入门要点,扫盲必看!

💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。

👉大模型入门实战训练👈

💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

👉国内企业大模型落地应用案例👈

💥《中国大模型落地应用案例集》 收录了52个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)

💥《2024大模型行业应用十大典范案例集》 汇集了文化、医药、IT、钢铁、航空、企业服务等行业在大模型应用领域的典范案例。

👉LLM大模型学习视频👈

💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)

👉640份大模型行业报告👈

💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

👉获取方式:

这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

相关推荐
健忘的派大星3 小时前
什么是RAG,有哪些RAG引擎?看完这一篇你就知道了!!
人工智能·ai·语言模型·langchain·llm·agi·rag
大数据AI人工智能培训专家培训讲师叶梓5 小时前
基于模型内部的检索增强型生成答案归属方法:MIRAGE
人工智能·自然语言处理·性能优化·大模型·微调·调优·检索增强型生成
AI原吾5 小时前
构建灵活、高效的HTTP/1.1应用:探索h11库
网络·python·网络协议·http·ai·h11
中杯可乐多加冰6 小时前
【AI应用落地实战】智能文档处理本地部署——可视化文档解析前端TextIn ParseX实践
人工智能·深度学习·大模型·ocr·智能文档处理·acge·textin
小城哇哇6 小时前
【AI多模态大模型】基于AI的多模态数据痴呆病因鉴别诊断
人工智能·ai·语言模型·llm·agi·多模态·rag
互联网杂货铺9 小时前
单元测试详解
自动化测试·软件测试·python·测试工具·程序人生·职场和发展·单元测试
Roc_z710 小时前
探讨Facebook的AI研究:未来社交平台的技术前瞻
ai·facebook·社交媒体·隐私保护
MJ绘画中文版10 小时前
灵动AI:科技改变未来
人工智能·ai·ai视频
大模型算法和部署10 小时前
构建生产级的 RAG 系统
人工智能·机器学习·ai