nnUnet 大模型学习笔记(续):训练网络(3d_fullres)以及数据集标签的处理

目录

[1. 数据集处理](#1. 数据集处理)

[1.1 实现脚本](#1.1 实现脚本)

[1.2 json文件](#1.2 json文件)

[2. 设置读取路径](#2. 设置读取路径)

[2.1 设置路径](#2.1 设置路径)

[2.2 数据集转换](#2.2 数据集转换)

[2.3 数据集预处理](#2.3 数据集预处理)

[2.4 训练(3d_fullres)](#2.4 训练(3d_fullres))

[3. 训练结果展示](#3. 训练结果展示)


关于nnUnet 数据集的处理和环境搭建,参考上文:第四章:nnUnet大模型之环境配置、数据集制作-CSDN博客

1. 数据集处理

因为上文数据集的标签有很多问题,虽然处理起来很简单,为了防止后续需要,这里记录下

观察上文发现,数据的标签是19类别,但是mask的绘制不是连续的0 1 2 3,这样在图像分割中是

不允许的,需要做灰度映射。

实际上,在做unet一些列多类别分割的时候,已经介绍过自适应的灰度映射,这里只做简单介绍,具体参考下文:Unet 实战分割项目、多尺度训练、多类别分割_unet实例分割-CSDN博客

如果数据没有问题的话,直接跳到第二章即可!!

1.1 实现脚本

如下

python 复制代码
import SimpleITK as sitk
import numpy as np
import os
from tqdm import tqdm
import shutil


def main():
    root = 'labelsTr'
    images = [os.path.join(root, u) for u in os.listdir(root)]

    root_ret = 'ret_labelsTr'
    if os.path.exists(root_ret):
        shutil.rmtree(root_ret)
    os.mkdir(root_ret)

    # 计算灰度
    cl = []
    for i in tqdm(images, desc='process'):
        mask = sitk.ReadImage(i)
        mask = sitk.GetArrayFromImage(mask)
        mask = np.unique(mask)
        for h in mask:
            if h not in cl:
                cl.append(h)

    cl.sort()
    n = len(cl)
    print(cl)       # [0, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]
    print('分割的个数:',n)

    if n == cl[n-1]:
        return

    # 灰度映射
    for i in tqdm(images, desc='process'):
        mask = sitk.ReadImage(i)
        mask = sitk.GetArrayFromImage(mask)

        for index,h in enumerate(cl):
            mask[mask==h] = index

        mask = sitk.GetImageFromArray(mask)
        ret_path = i.replace(root,root_ret)
        sitk.WriteImage(mask,ret_path)

    # 检查灰度
    cl_ret = []
    images = [os.path.join(root_ret, u) for u in os.listdir(root_ret)]
    for i in tqdm(images, desc='process'):
        mask = sitk.ReadImage(i)
        mask = sitk.GetArrayFromImage(mask)
        mask = np.unique(mask)
        for h in mask:
            if h not in cl_ret:
                cl_ret.append(h)

    cl_ret.sort()
    n = len(cl_ret)
    print(cl_ret)       # [0, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]
    print('处理后分割的个数:',n)


if __name__ == '__main__':
    main()

摆放如下:脚本会将labelsTr的标签自动映射成0 1 2 3连续的,并且保存在新生成的ret下

运行如下:

可以看到mask的灰度已经进行了映射

通过itk打开,可以发现mask并没有改变,只是里面的数字变了,这样颜色显示也就变了

源标签:

处理完的:

1.2 json文件

更改如下:当然新的json文件可以用上文的脚本生成

python 复制代码
{
    "labels": {
        "0": "background",
        "1": "L1",
        "2": "L2",
        "3": "L3",
        "4": "L4",
        "5": "L5",
        "6": "L6",
        "7": "L7",
        "8": "L8",
        "9": "L9",
        "10": "L10",
        "11": "L11",
        "12": "L12",
        "13": "L13",
        "14": "L14",
        "15": "L15",
        "16": "L16",
        "17": "L17",
        "18": "L18"
    },
    "modality": {
        "0": "CT"
    },
    "numTest": 0,
    "numTraining": 40,
    "tensorImageSize": "3D",
    "test": [],
    "training": [
        {
            "image": "./imagesTr/spine_001.nii.gz",
            "label": "./labelsTr/spine_001.nii.gz"
        },
        {
            "image": "./imagesTr/spine_002.nii.gz",
            "label": "./labelsTr/spine_002.nii.gz"
        },
        {
            "image": "./imagesTr/spine_003.nii.gz",
            "label": "./labelsTr/spine_003.nii.gz"
        },
        {
            "image": "./imagesTr/spine_004.nii.gz",
            "label": "./labelsTr/spine_004.nii.gz"
        },
        {
            "image": "./imagesTr/spine_005.nii.gz",
            "label": "./labelsTr/spine_005.nii.gz"
        },
        {
            "image": "./imagesTr/spine_006.nii.gz",
            "label": "./labelsTr/spine_006.nii.gz"
        },
        {
            "image": "./imagesTr/spine_007.nii.gz",
            "label": "./labelsTr/spine_007.nii.gz"
        },
        {
            "image": "./imagesTr/spine_008.nii.gz",
            "label": "./labelsTr/spine_008.nii.gz"
        },
        {
            "image": "./imagesTr/spine_009.nii.gz",
            "label": "./labelsTr/spine_009.nii.gz"
        },
        {
            "image": "./imagesTr/spine_010.nii.gz",
            "label": "./labelsTr/spine_010.nii.gz"
        },
        {
            "image": "./imagesTr/spine_011.nii.gz",
            "label": "./labelsTr/spine_011.nii.gz"
        },
        {
            "image": "./imagesTr/spine_012.nii.gz",
            "label": "./labelsTr/spine_012.nii.gz"
        },
        {
            "image": "./imagesTr/spine_013.nii.gz",
            "label": "./labelsTr/spine_013.nii.gz"
        },
        {
            "image": "./imagesTr/spine_014.nii.gz",
            "label": "./labelsTr/spine_014.nii.gz"
        },
        {
            "image": "./imagesTr/spine_015.nii.gz",
            "label": "./labelsTr/spine_015.nii.gz"
        },
        {
            "image": "./imagesTr/spine_016.nii.gz",
            "label": "./labelsTr/spine_016.nii.gz"
        },
        {
            "image": "./imagesTr/spine_017.nii.gz",
            "label": "./labelsTr/spine_017.nii.gz"
        },
        {
            "image": "./imagesTr/spine_018.nii.gz",
            "label": "./labelsTr/spine_018.nii.gz"
        },
        {
            "image": "./imagesTr/spine_019.nii.gz",
            "label": "./labelsTr/spine_019.nii.gz"
        },
        {
            "image": "./imagesTr/spine_020.nii.gz",
            "label": "./labelsTr/spine_020.nii.gz"
        },
        {
            "image": "./imagesTr/spine_021.nii.gz",
            "label": "./labelsTr/spine_021.nii.gz"
        },
        {
            "image": "./imagesTr/spine_022.nii.gz",
            "label": "./labelsTr/spine_022.nii.gz"
        },
        {
            "image": "./imagesTr/spine_023.nii.gz",
            "label": "./labelsTr/spine_023.nii.gz"
        },
        {
            "image": "./imagesTr/spine_024.nii.gz",
            "label": "./labelsTr/spine_024.nii.gz"
        },
        {
            "image": "./imagesTr/spine_025.nii.gz",
            "label": "./labelsTr/spine_025.nii.gz"
        },
        {
            "image": "./imagesTr/spine_026.nii.gz",
            "label": "./labelsTr/spine_026.nii.gz"
        },
        {
            "image": "./imagesTr/spine_027.nii.gz",
            "label": "./labelsTr/spine_027.nii.gz"
        },
        {
            "image": "./imagesTr/spine_028.nii.gz",
            "label": "./labelsTr/spine_028.nii.gz"
        },
        {
            "image": "./imagesTr/spine_029.nii.gz",
            "label": "./labelsTr/spine_029.nii.gz"
        },
        {
            "image": "./imagesTr/spine_030.nii.gz",
            "label": "./labelsTr/spine_030.nii.gz"
        },
        {
            "image": "./imagesTr/spine_031.nii.gz",
            "label": "./labelsTr/spine_031.nii.gz"
        },
        {
            "image": "./imagesTr/spine_032.nii.gz",
            "label": "./labelsTr/spine_032.nii.gz"
        },
        {
            "image": "./imagesTr/spine_033.nii.gz",
            "label": "./labelsTr/spine_033.nii.gz"
        },
        {
            "image": "./imagesTr/spine_034.nii.gz",
            "label": "./labelsTr/spine_034.nii.gz"
        },
        {
            "image": "./imagesTr/spine_035.nii.gz",
            "label": "./labelsTr/spine_035.nii.gz"
        },
        {
            "image": "./imagesTr/spine_036.nii.gz",
            "label": "./labelsTr/spine_036.nii.gz"
        },
        {
            "image": "./imagesTr/spine_037.nii.gz",
            "label": "./labelsTr/spine_037.nii.gz"
        },
        {
            "image": "./imagesTr/spine_038.nii.gz",
            "label": "./labelsTr/spine_038.nii.gz"
        },
        {
            "image": "./imagesTr/spine_039.nii.gz",
            "label": "./labelsTr/spine_039.nii.gz"
        },
        {
            "image": "./imagesTr/spine_040.nii.gz",
            "label": "./labelsTr/spine_040.nii.gz"
        }
    ]
}

2. 设置读取路径

回到正文 ,这里的Task下有如下数据,source nnunet/bin/activate 激活nnunet环境

Tips:这里的 labelsTr和dataset.json是第一节处理后的

任务名称为Task01_Spine

2.1 设置路径

这里设置为绝对路径,除了DATASET后面的,前面部分需要根据不同机器设定

在这里更改 vim .bashrc(vim ~/.bashrc 末尾最后面)

python 复制代码
export nnUNet_raw_data_base="/*/DATASET/nnUNet_raw"
export nnUNet_preprocessed="/*/DATASET/nnUNet_preprocessed"
export RESULTS_FOLDER="/*/DATASET/nnUNet_trained_models"

这里设置后,如果想要训练其他模型,不需要在进行更改

添加完成后保存, source ~/.bashrc 更新环境变量,可以通过echo $RESULTS_FOLDER 检查是否修改成功

2.2 数据集转换

下面命令都是在environments 目录里进行操作

转换命令为

python 复制代码
nnUNet_convert_decathlon_task -i DATASET/nnUNet_raw/nnUNet_raw_data/Task01_Spine/

转换完的数据在:

图像可能具有多种模态,nnU-Net通过其后缀(文件名末尾的四位整数)识别成像模态。因此,图像文件必须遵循以下命名约定:case_identifier_XXXX.nii.gz。

这里,XXXX是模态标识符。dataset.json文件中指定了这些标识符所属的模态。

标签文件保存为case_identifier.nii.gz

例如:BrainTumor。每个图像有四种模态:FLAIR(0000)、T1w(0001)、T1gd(0002)和T2w(0003)

2.3 数据集预处理

命令如下 :(这里只会做训练集进行预处理,测试集不会处理

python 复制代码
nnUNet_plan_and_preprocess -t 1

只需要一行命令,因为 Task_id是1,所以这里的数字就是1。这个过程会消耗很多的时间,速度慢的原因在于对要进行插值等各种操作。

生成的数据在crop和precocessed里面查看

2.4 训练(3d_fullres)

命令如下

python 复制代码
nnUNet_train 3d_fullres nnUNetTrainerV2 1 0

1 指的是Task标号,5 指定训练的是5倍交叉验证的哪一倍。

会实时生成如下结果:在这里 nnUNet_trained_models

3. 训练结果展示

RTX 3090跑一个epoch大概100s,1000个epoch估计要一两天,等跑完下篇文章在贴训练结果吧

相关推荐
爱写代码的小朋友15 分钟前
使用 OpenCV 进行人脸检测
人工智能·opencv·计算机视觉
TT哇20 分钟前
【Java】数组的定义与使用
java·开发语言·笔记
Cici_ovo31 分钟前
摄像头点击器常见问题——摄像头视窗打开慢
人工智能·单片机·嵌入式硬件·物联网·计算机视觉·硬件工程
QQ39575332371 小时前
中阳智能交易系统:创新金融科技赋能投资新时代
人工智能·金融
yyfhq1 小时前
dcgan
深度学习·机器学习·生成对抗网络
这个男人是小帅1 小时前
【图神经网络】 AM-GCN论文精讲(全网最细致篇)
人工智能·pytorch·深度学习·神经网络·分类
黑叶白树2 小时前
包和模块(上) python复习笔记
开发语言·笔记·python
T_Y99432 小时前
selenium学习日记
学习·selenium·测试工具
L_Z_J_I2 小时前
超子物联网HAL库笔记:多指针定位+循环收发缓冲区方案设计
笔记
放松吃羊肉2 小时前
【约束优化】一次搞定拉格朗日,对偶问题,弱对偶定理,Slater条件和KKT条件
人工智能·机器学习·支持向量机·对偶问题·约束优化·拉格朗日·kkt