053_python基于深度学习的短视频内容理解与推荐系统

目录

系统展示

开发背景

代码实现

项目案例

获取源码


博主介绍:CodeMentor毕业设计领航者、全网关注者30W+群落,InfoQ特邀专栏作家、技术博客领航者、InfoQ新星培育计划导师、Web开发领域杰出贡献者,博客领航之星、开发者头条/腾讯云/AWS/Wired等平台优选内容创作者、深耕Web开发与学生毕业设计实战指导,与高校教育者/资深讲师/行业专家深度对话🤝

技术专长:Spring Framework、Angular、MyBatis、HTML5+CSS3、Servlet、Ruby on Rails、Node.js、Rust、网络爬虫、数据可视化、微信小程序、iOS应用开发、云计算、边缘计算、自然语言处理等项目的规划与实施。

核心服务:无偿功能蓝图构思、项目启动报告、任务规划书、阶段评估演示文稿、系统功能落地、代码实现与优化、学术论文定制指导、论文精炼与重组、长期答辩筹备咨询、Zoom在线一对一深度解析答辩要点、模拟答辩实战彩排、以及代码逻辑与架构设计深度剖析。

🍅文末获取源码联系🍅

👇🏻 精彩专栏推荐订阅👇🏻 不然下次找不到哟

Java项目精品实战案例《100套》

Java微信小程序项目实战《100套》

大数据项目实战《100套》

Python项目实战《100套》

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

系统展示

开发背景

基于深度学习的短视频内容理解与推荐系统的开发背景主要源于互联网技术的飞速发展和用户对个性化内容需求的提升。随着网络带宽的提升和移动设备的普及,短视频平台如抖音、快手等迅速崛起,成为人们日常生活中不可或缺的一部分。

在当前的短视频市场中,虽然存在大量的内容供用户选择,但如何从海量的视频中找到符合用户兴趣的内容,仍然是一个挑战。传统的推荐系统往往依赖于用户的显式反馈(如评分)或隐式反馈(如点击率),但这些方法在处理复杂多变的用户偏好时显得力不从心。因此,基于深度学习的短视频内容理解与推荐系统应运而生,旨在通过更深层次的特征提取和复杂的模型结构,提高推荐的准确性和个性化程度。

综上所述,基于深度学习的短视频内容理解与推荐系统的设计和实现,不仅具有重要的现实意义和应用价值,还为未来视频平台的发展方向提供了新的思路和技术支撑。

代码实现

java 复制代码
/**
 * 登录相关
 */
@RequestMapping("users")
@RestController
public class UserController{
    
    @Autowired
    private UserService userService;
    
    @Autowired
    private TokenService tokenService;
 
    /**
     * 登录
     */
    @IgnoreAuth
    @PostMapping(value = "/login")
    public R login(String username, String password, String role, HttpServletRequest request) {
        UserEntity user = userService.selectOne(new EntityWrapper<UserEntity>().eq("username", username));
        if(user != null){
            if(!user.getRole().equals(role)){
                return R.error("权限不正常");
            }
            if(user==null || !user.getPassword().equals(password)) {
                return R.error("账号或密码不正确");
            }
            String token = tokenService.generateToken(user.getId(),username, "users", user.getRole());
            return R.ok().put("token", token);
        }else{
            return R.error("账号或密码或权限不对");
        }
 
    }
    
    /**
     * 注册
     */
    @IgnoreAuth
    @PostMapping(value = "/register")
    public R register(@RequestBody UserEntity user){
//        ValidatorUtils.validateEntity(user);
        if(userService.selectOne(new EntityWrapper<UserEntity>().eq("username", user.getUsername())) !=null) {
            return R.error("用户已存在");
        }
        userService.insert(user);
        return R.ok();
    }
 
    /**
     * 退出
     */
    @GetMapping(value = "logout")
    public R logout(HttpServletRequest request) {
        request.getSession().invalidate();
        return R.ok("退出成功");
    }
    
    /**
     * 密码重置
     */
    @IgnoreAuth
    @RequestMapping(value = "/resetPass")
    public R resetPass(String username, HttpServletRequest request){
        UserEntity user = userService.selectOne(new EntityWrapper<UserEntity>().eq("username", username));
        if(user==null) {
            return R.error("账号不存在");
        }
        user.setPassword("123456");
        userService.update(user,null);
        return R.ok("密码已重置为:123456");
    }
    
    /**
     * 列表
     */
    @RequestMapping("/page")
    public R page(@RequestParam Map<String, Object> params,UserEntity user){
        EntityWrapper<UserEntity> ew = new EntityWrapper<UserEntity>();
        PageUtils page = userService.queryPage(params, MPUtil.sort(MPUtil.between(MPUtil.allLike(ew, user), params), params));
        return R.ok().put("data", page);
    }
 
    /**
     * 信息
     */
    @RequestMapping("/info/{id}")
    public R info(@PathVariable("id") String id){
        UserEntity user = userService.selectById(id);
        return R.ok().put("data", user);
    }
    
    /**
     * 获取用户的session用户信息
     */
    @RequestMapping("/session")
    public R getCurrUser(HttpServletRequest request){
        Integer id = (Integer)request.getSession().getAttribute("userId");
        UserEntity user = userService.selectById(id);
        return R.ok().put("data", user);
    }
 
    /**
     * 保存
     */
    @PostMapping("/save")
    public R save(@RequestBody UserEntity user){
//        ValidatorUtils.validateEntity(user);
        if(userService.selectOne(new EntityWrapper<UserEntity>().eq("username", user.getUsername())) !=null) {
            return R.error("用户已存在");
        }
        userService.insert(user);
        return R.ok();
    }
 
    /**
     * 修改
     */
    @RequestMapping("/update")
    public R update(@RequestBody UserEntity user){
//        ValidatorUtils.validateEntity(user);
        userService.updateById(user);//全部更新
        return R.ok();
    }
 
    /**
     * 删除
     */
    @RequestMapping("/delete")
    public R delete(@RequestBody Integer[] ids){
        userService.deleteBatchIds(Arrays.asList(ids));
        return R.ok();
    }
}

项目案例

获取源码

大家点赞、收藏、关注、评论 啦 、查看 👇🏻获取联系方式👇🏻

相关推荐
cver1233 分钟前
CSGO 训练数据集介绍-2,427 张图片 AI 游戏助手 游戏数据分析
人工智能·深度学习·yolo·目标检测·游戏·计算机视觉
FreeBuf_8 分钟前
新型BERT勒索软件肆虐:多线程攻击同时针对Windows、Linux及ESXi系统
人工智能·深度学习·bert
彭泽布衣15 分钟前
python2.7/lib-dynload/_ssl.so: undefined symbol: sk_pop_free
python·sk_pop_free
强哥之神40 分钟前
Meta AI 推出 Multi - SpatialMLLM:借助多模态大语言模型实现多帧空间理解
人工智能·深度学习·计算机视觉·语言模型·自然语言处理·llama
witton1 小时前
Go语言网络游戏服务器模块化编程
服务器·开发语言·游戏·golang·origin·模块化·耦合
成都极云科技1 小时前
成都算力租赁新趋势:H20 八卡服务器如何重塑 AI 产业格局?
大数据·服务器·人工智能·云计算·gpu算力
喜欢吃豆1 小时前
从零构建MCP服务器:FastMCP实战指南
运维·服务器·人工智能·python·大模型·mcp
一个处女座的测试1 小时前
Python语言+pytest框架+allure报告+log日志+yaml文件+mysql断言实现接口自动化框架
python·mysql·pytest
ai_xiaogui1 小时前
AIStarter用户与创作者模式详解:一键管理Stable Diffusion项目!
人工智能·stable diffusion·一键发布ai项目·熊哥aistarter教程·开发者必备aistarter
枯萎穿心攻击1 小时前
ECS由浅入深第三节:进阶?System 的行为与复杂交互模式
开发语言·unity·c#·游戏引擎