《PyTorch深度学习快速入门教程》学习笔记(第17周)

目录

摘要

Abstract

[1. Transforms用途](#1. Transforms用途)

[2. Transforms该如何使用](#2. Transforms该如何使用)

[2.1 transforms.Totensor使用](#2.1 transforms.Totensor使用)

[2.2 需要Tensor数据类型原因](#2.2 需要Tensor数据类型原因)

[3. 常见的Transforms工具](#3. 常见的Transforms工具)

[3.1 __call__魔术方法使用](#3.1 __call__魔术方法使用)

[3.2 Normanize归一化](#3.2 Normanize归一化)

[3.3 Resize裁剪](#3.3 Resize裁剪)

[3.3.1 Resize裁剪方法一](#3.3.1 Resize裁剪方法一)

[3.3.2 Resize裁剪方法二](#3.3.2 Resize裁剪方法二)

[3.4 RandomCrop随机裁剪](#3.4 RandomCrop随机裁剪)

[3.4.1 RandomCrop随机裁剪方式一](#3.4.1 RandomCrop随机裁剪方式一)

[3.4.2 RandomCrop随机裁剪方式二](#3.4.2 RandomCrop随机裁剪方式二)


摘要

本周报的目的在于汇报《PyTorch深度学习快速入门教程》课程第三周的学习成果,主要聚焦于Transforms的使用以及其相关内容。

在这本周的学习中,课程内容主要涵盖了Transforms使用,包括常见的Transfroms工具,Resize裁剪和RandomCrop随机裁剪等等。

本篇文章将对学习内容进行详细的阐述,并在最后部分对本周的学习内容进行总结。本周报旨在通过这种方式,将理论知识与实践应用有效地结合起来,为深度学习的基础内容学习与方向提供概括性总结。

Abstract

The purpose of this weekly report is to present the learning outcomes of the third week of the PyTorch Deep Learning Quick Start Tutorial course, with a focus on the use of Transformers and its related content.

In this week's learning, the course content mainly covers the use of Transformers, including common Transfors tools, Resize cropping, RandomCrop, and so on.

This article will provide a detailed explanation of the learning content and summarize the learning content for this week in the final section. This weekly report aims to effectively combine theoretical knowledge with practical applications in this way, providing a summary of the basic content and direction of deep learning learning learning.

1. Transforms用途

① Transforms当成工具箱的话,里面的class就是不同的工具。例如像totensor、resize这些工具。

② Transforms拿一些特定格式的图片,经过Transforms里面的工具,获得我们想要的结果。

2. Transforms该如何使用

2.1 transforms.Totensor使用

2.2 需要Tensor数据类型原因

① Tensor有一些属性,比如反向传播、梯度等属性,它包装了神经网络需要的一些属性。

② 在 Anaconda 终端里面,激活py3.6.3环境,再输入 tensorboard --logdir=C:\Users\wangy\Desktop\03CV\logs 命令,将网址赋值浏览器的网址栏,回车,即可查看tensorboard显示日志情况。

③ 输入网址可得Tensorboard界面。

3. 常见的Transforms工具

① Transforms的工具主要关注他的输入、输出、作用。

3.1 __call__魔术方法使用

3.2 Normanize归一化

3.3 Resize裁剪

3.3.1 Resize裁剪方法一

3.3.2 Resize裁剪方法二

3.4 RandomCrop随机裁剪

3.4.1 RandomCrop随机裁剪方式一

3.4.2 RandomCrop随机裁剪方式二

相关推荐
二川bro32 分钟前
多模态AI开发:Python实现跨模态学习
人工智能·python·学习
石像鬼₧魂石1 小时前
Netcat,网络瑞士军刀(新手学习备用)
学习
青瓷程序设计1 小时前
昆虫识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
小殊小殊1 小时前
DeepSeek为什么这么慢?
人工智能·深度学习
todoitbo2 小时前
基于 DevUI MateChat 搭建前端编程学习智能助手:从痛点到解决方案
前端·学习·ai·状态模式·devui·matechat
Coding茶水间3 小时前
基于深度学习的路面坑洞检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
哥布林学者4 小时前
吴恩达深度学习课程三: 结构化机器学习项目 第二周:误差分析与学习方法(一)误差分析与快速迭代
深度学习·ai
Ma0407134 小时前
【机器学习】监督学习、无监督学习、半监督学习、自监督学习、弱监督学习、强化学习
人工智能·学习·机器学习
CoovallyAIHub4 小时前
如何在手机上轻松识别多种鸟类?我们发现了更简单的秘密……
深度学习·算法·计算机视觉
小熊officer4 小时前
Nginx学习
运维·学习·nginx