Yolov10训练的餐盘菜品目标检测软件(包含源码及数据集)

本文摘要

摘要:本文主要使用YOLOV10深度学习框架自训练了一个"餐盘菜品目标检测模型",基于此模型使用PYQT5实现了一款界面软件用于功能演示。让您可以更好的了解和学习,该软件支持图片、视频以及摄像头进行目标检测,本系统所涉及的训练数据及软件源码已打包上传。可点下发 原文链接获取

原文链接:源码及训练数据集下载(可一对一指导)

1. 数据集准备与标注、训练

详见:【菜品识别专栏】菜品目标检测数据集标注及处理(Yolov10)

目标检测的数据,在一张图像中,需要以最小外接矩形标记出各个目标区域的位置和类别,

常见的目标检测数据集:

  • VOC采用的[x1,y1,x2,y2],表示物体的最小外接矩形框,VOC数据指的是Pascal VOC比赛使用的数据。VOC数据是每个图像文件对应一个同名的xml文件,xml文件中标记物体框的坐标和类别等信息。
  • COCO采用的[x1,y1,w,h],表示物体的最小外接矩形框,COCO数据是COCO比赛使用的数据。以json文件记录数据格式。
    LabelImg可以标注VOC格式的数据,对图像做目标框的标注。
    本文的数据集既包含:voc格式,也包含coco格式。

2. 软件运行

  1. 获取源码

  2. 依赖环境下载

python 复制代码
conda create -n yolov10 python=3.9
conda activate yolov10
 1.切换到yolov10源码根目录下,安装依赖
注意:会自动根据你是否有GPU自动选择pytorch版本进行按照,这里不需要自己去选择pytorch和cuda
pip install -r requirements.txt -i https://pypi.doubanio.com/simple
2.运行下面的命令,才可以在命令行使用yolo等命令
pip install -e .

python train.py
  1. 源码运行
python 复制代码
python main.py
  1. 图片检测演示

  2. 摄像头检测演示

YOlov10餐盘菜品目标检测

3. 模型训练&训练结果评估

详见:【深度学习】深度学习模型训练结果分析及效果评估以及Yolo训练结果解释

上文包括:混淆矩阵、查准率和召回率、单一类准确率等 概念的解释以及示例

4. 源码讲解

  1. 模型加载

  2. 读取图片,推理画框

  3. 启动摄像头

  4. 获取摄像头视频帧,推理画框

相关推荐
脑极体5 分钟前
机器人的罪与罚
人工智能·机器人
三不原则11 分钟前
故障案例:容器启动失败排查(AI运维场景)——从日志分析到根因定位
运维·人工智能·kubernetes
点云SLAM27 分钟前
凸优化(Convex Optimization)理论(1)
人工智能·算法·slam·数学原理·凸优化·数值优化理论·机器人应用
会周易的程序员34 分钟前
多模态AI 基于工业级编译技术的PLC数据结构解析与映射工具
数据结构·c++·人工智能·单例模式·信息可视化·架构
BlockWay35 分钟前
WEEX 成为 LALIGA 西甲联赛香港及台湾地区官方区域合作伙伴
大数据·人工智能·安全
虹科网络安全42 分钟前
艾体宝案例 | 从关系到语义:ArangoDB如何支撑高精度水军识别
人工智能
大霸王龙1 小时前
MinIO 对象存储系统架构图集
人工智能·llm·minio
汗流浃背了吧,老弟!1 小时前
什么是ResNet
人工智能·深度学习
小途软件1 小时前
高校宿舍访客预约管理平台开发
java·人工智能·pytorch·python·深度学习·语言模型
人工智能培训1 小时前
10分钟了解向量数据库(3)
人工智能·大模型·知识图谱·强化学习·智能体搭建