Yolov10训练的餐盘菜品目标检测软件(包含源码及数据集)

本文摘要

摘要:本文主要使用YOLOV10深度学习框架自训练了一个"餐盘菜品目标检测模型",基于此模型使用PYQT5实现了一款界面软件用于功能演示。让您可以更好的了解和学习,该软件支持图片、视频以及摄像头进行目标检测,本系统所涉及的训练数据及软件源码已打包上传。可点下发 原文链接获取

原文链接:源码及训练数据集下载(可一对一指导)

1. 数据集准备与标注、训练

详见:【菜品识别专栏】菜品目标检测数据集标注及处理(Yolov10)

目标检测的数据,在一张图像中,需要以最小外接矩形标记出各个目标区域的位置和类别,

常见的目标检测数据集:

  • VOC采用的[x1,y1,x2,y2],表示物体的最小外接矩形框,VOC数据指的是Pascal VOC比赛使用的数据。VOC数据是每个图像文件对应一个同名的xml文件,xml文件中标记物体框的坐标和类别等信息。
  • COCO采用的[x1,y1,w,h],表示物体的最小外接矩形框,COCO数据是COCO比赛使用的数据。以json文件记录数据格式。
    LabelImg可以标注VOC格式的数据,对图像做目标框的标注。
    本文的数据集既包含:voc格式,也包含coco格式。

2. 软件运行

  1. 获取源码

  2. 依赖环境下载

python 复制代码
conda create -n yolov10 python=3.9
conda activate yolov10
 1.切换到yolov10源码根目录下,安装依赖
注意:会自动根据你是否有GPU自动选择pytorch版本进行按照,这里不需要自己去选择pytorch和cuda
pip install -r requirements.txt -i https://pypi.doubanio.com/simple
2.运行下面的命令,才可以在命令行使用yolo等命令
pip install -e .

python train.py
  1. 源码运行
python 复制代码
python main.py
  1. 图片检测演示

  2. 摄像头检测演示

YOlov10餐盘菜品目标检测

3. 模型训练&训练结果评估

详见:【深度学习】深度学习模型训练结果分析及效果评估以及Yolo训练结果解释

上文包括:混淆矩阵、查准率和召回率、单一类准确率等 概念的解释以及示例

4. 源码讲解

  1. 模型加载

  2. 读取图片,推理画框

  3. 启动摄像头

  4. 获取摄像头视频帧,推理画框

相关推荐
聊聊科技7 分钟前
清唱一遍歌词即可制作完整歌曲的编曲伴奏,原创音乐人借助AI编曲软件轻松出歌
人工智能
大模型任我行11 分钟前
华为:CLI任务自动生成新范式
人工智能·语言模型·自然语言处理·论文笔记
追风少年ii13 分钟前
顶刊分享--由细菌-癌细胞相互作用决定的差异性肿瘤免疫
人工智能·算法·数据分析·空间·单细胞
RoyLin15 分钟前
10美元硬件中可运行的隐私 LLM 推理引擎
人工智能·rust·agent
AC赳赳老秦28 分钟前
2026多模态技术趋势预测:DeepSeek处理图文音视频多格式数据实战指南
java·人工智能·python·安全·架构·prometheus·deepseek
nopSled41 分钟前
在 AlphaAvatar 中接入 MCP:统一工具入口 + 并行调度的工程实践
人工智能·语言模型·自然语言处理
赵鑫亿41 分钟前
ClawPanel v4.4.0 发布:AI 智能助手 + 模型兼容性修复 + UI 优化
人工智能·ui·docker·容器·qq·openclaw
智慧地球(AI·Earth)1 小时前
重磅!Gemini 3.1 Pro 发布!
人工智能
田里的水稻1 小时前
LPC_激光点云定位(LSLAM)-正态分布变换(NDT)
人工智能·算法·数学建模·机器人·自动驾驶
JamesYoung79711 小时前
第1章 — OpenClaw是什么?你应该如何思考它?
人工智能