Yolov10训练的餐盘菜品目标检测软件(包含源码及数据集)

本文摘要

摘要:本文主要使用YOLOV10深度学习框架自训练了一个"餐盘菜品目标检测模型",基于此模型使用PYQT5实现了一款界面软件用于功能演示。让您可以更好的了解和学习,该软件支持图片、视频以及摄像头进行目标检测,本系统所涉及的训练数据及软件源码已打包上传。可点下发 原文链接获取

原文链接:源码及训练数据集下载(可一对一指导)

1. 数据集准备与标注、训练

详见:【菜品识别专栏】菜品目标检测数据集标注及处理(Yolov10)

目标检测的数据,在一张图像中,需要以最小外接矩形标记出各个目标区域的位置和类别,

常见的目标检测数据集:

  • VOC采用的[x1,y1,x2,y2],表示物体的最小外接矩形框,VOC数据指的是Pascal VOC比赛使用的数据。VOC数据是每个图像文件对应一个同名的xml文件,xml文件中标记物体框的坐标和类别等信息。
  • COCO采用的[x1,y1,w,h],表示物体的最小外接矩形框,COCO数据是COCO比赛使用的数据。以json文件记录数据格式。
    LabelImg可以标注VOC格式的数据,对图像做目标框的标注。
    本文的数据集既包含:voc格式,也包含coco格式。

2. 软件运行

  1. 获取源码

  2. 依赖环境下载

python 复制代码
conda create -n yolov10 python=3.9
conda activate yolov10
 1.切换到yolov10源码根目录下,安装依赖
注意:会自动根据你是否有GPU自动选择pytorch版本进行按照,这里不需要自己去选择pytorch和cuda
pip install -r requirements.txt -i https://pypi.doubanio.com/simple
2.运行下面的命令,才可以在命令行使用yolo等命令
pip install -e .

python train.py
  1. 源码运行
python 复制代码
python main.py
  1. 图片检测演示

  2. 摄像头检测演示

YOlov10餐盘菜品目标检测

3. 模型训练&训练结果评估

详见:【深度学习】深度学习模型训练结果分析及效果评估以及Yolo训练结果解释

上文包括:混淆矩阵、查准率和召回率、单一类准确率等 概念的解释以及示例

4. 源码讲解

  1. 模型加载

  2. 读取图片,推理画框

  3. 启动摄像头

  4. 获取摄像头视频帧,推理画框

相关推荐
昨夜见军贴06164 小时前
合规性管理的现代化实践:IACheck的AI审核如何系统提升生产型检测报告的合规水平
大数据·运维·人工智能
自可乐4 小时前
AutoGen(多智能体AI框架)全面学习教程
人工智能·python·学习·ai
人工智能AI技术4 小时前
手搓一个AI搜索引擎:基于百度DeepSearch框架的实战开发笔记
人工智能·百度
郝学胜-神的一滴4 小时前
机器学习中的特征提取:PCA与LDA详解及sklearn实践
人工智能·python·程序人生·算法·机器学习·sklearn
是小蟹呀^4 小时前
卷积神经网络(CNN):池化操作
人工智能·深度学习·神经网络·cnn
草莓熊Lotso4 小时前
远程控制软件实测!2026年1月远程软件从“夯”到“拉”全功能横评
运维·服务器·数据库·人工智能
发哥来了4 小时前
主流AI视频生成模型商用化能力评测:三大核心维度对比分析
大数据·人工智能·音视频
应用市场4 小时前
【自动驾驶感知】基于3D部件引导的图像编辑:细粒度车辆状态理解技术详解
人工智能·3d·自动驾驶
量子-Alex4 小时前
【大模型技术报告】通义千问-VL:一款多功能视觉语言模型,支持理解、定位、文本识别等广泛任务
人工智能·语言模型·自然语言处理
艾莉丝努力练剑4 小时前
【Linux进程控制(三)】实现自主Shell命令行解释器
linux·运维·服务器·c++·人工智能·安全·云原生