Yolov10训练的餐盘菜品目标检测软件(包含源码及数据集)

本文摘要

摘要:本文主要使用YOLOV10深度学习框架自训练了一个"餐盘菜品目标检测模型",基于此模型使用PYQT5实现了一款界面软件用于功能演示。让您可以更好的了解和学习,该软件支持图片、视频以及摄像头进行目标检测,本系统所涉及的训练数据及软件源码已打包上传。可点下发 原文链接获取

原文链接:源码及训练数据集下载(可一对一指导)

1. 数据集准备与标注、训练

详见:【菜品识别专栏】菜品目标检测数据集标注及处理(Yolov10)

目标检测的数据,在一张图像中,需要以最小外接矩形标记出各个目标区域的位置和类别,

常见的目标检测数据集:

  • VOC采用的[x1,y1,x2,y2],表示物体的最小外接矩形框,VOC数据指的是Pascal VOC比赛使用的数据。VOC数据是每个图像文件对应一个同名的xml文件,xml文件中标记物体框的坐标和类别等信息。
  • COCO采用的[x1,y1,w,h],表示物体的最小外接矩形框,COCO数据是COCO比赛使用的数据。以json文件记录数据格式。
    LabelImg可以标注VOC格式的数据,对图像做目标框的标注。
    本文的数据集既包含:voc格式,也包含coco格式。

2. 软件运行

  1. 获取源码

  2. 依赖环境下载

python 复制代码
conda create -n yolov10 python=3.9
conda activate yolov10
 1.切换到yolov10源码根目录下,安装依赖
注意:会自动根据你是否有GPU自动选择pytorch版本进行按照,这里不需要自己去选择pytorch和cuda
pip install -r requirements.txt -i https://pypi.doubanio.com/simple
2.运行下面的命令,才可以在命令行使用yolo等命令
pip install -e .

python train.py
  1. 源码运行
python 复制代码
python main.py
  1. 图片检测演示

  2. 摄像头检测演示

YOlov10餐盘菜品目标检测

3. 模型训练&训练结果评估

详见:【深度学习】深度学习模型训练结果分析及效果评估以及Yolo训练结果解释

上文包括:混淆矩阵、查准率和召回率、单一类准确率等 概念的解释以及示例

4. 源码讲解

  1. 模型加载

  2. 读取图片,推理画框

  3. 启动摄像头

  4. 获取摄像头视频帧,推理画框

相关推荐
加油吧zkf41 分钟前
循环神经网络 RNN:从时间序列到自然语言的秘密武器
人工智能·rnn·自然语言处理
koo3642 小时前
李宏毅机器学习笔记30
人工智能·笔记·机器学习
长桥夜波2 小时前
机器学习日报02
人工智能·机器学习·neo4j
Elastic 中国社区官方博客3 小时前
介绍 Elastic 的 Agent Builder - 9.2
大数据·运维·人工智能·elasticsearch·搜索引擎·ai·全文检索
拓端研究室3 小时前
专题:2025年制造业数智化发展白皮书:数字化转型与智能制造|附130+份报告PDF、数据、绘图模板汇总下载
人工智能
就不爱吃大米饭3 小时前
ChatGPT官方AI浏览器正式推出:ChatGPT Atlas浏览器功能及操作全解!
人工智能·chatgpt
tainshuai3 小时前
YOLOv4 实战指南:单 GPU 训练的目标检测利器
yolo·目标检测·机器学习
牛客企业服务3 小时前
企业招聘新趋势:「AI面试」如何破解在线作弊难题?
人工智能·面试·职场和发展·招聘·ai招聘
infominer3 小时前
数据处理像搭乐高?详解 RAGFlow Ingestion Pipeline
人工智能·ai-native
飞翔的佩奇3 小时前
【完整源码+数据集+部署教程】【运动的&足球】足球场地区域图像分割系统源码&数据集全套:改进yolo11-RFAConv
前端·python·yolo·计算机视觉·数据集·yolo11·足球场地区域图像分割系统