Yolov10训练的餐盘菜品目标检测软件(包含源码及数据集)

本文摘要

摘要:本文主要使用YOLOV10深度学习框架自训练了一个"餐盘菜品目标检测模型",基于此模型使用PYQT5实现了一款界面软件用于功能演示。让您可以更好的了解和学习,该软件支持图片、视频以及摄像头进行目标检测,本系统所涉及的训练数据及软件源码已打包上传。可点下发 原文链接获取

原文链接:源码及训练数据集下载(可一对一指导)

1. 数据集准备与标注、训练

详见:【菜品识别专栏】菜品目标检测数据集标注及处理(Yolov10)

目标检测的数据,在一张图像中,需要以最小外接矩形标记出各个目标区域的位置和类别,

常见的目标检测数据集:

  • VOC采用的[x1,y1,x2,y2],表示物体的最小外接矩形框,VOC数据指的是Pascal VOC比赛使用的数据。VOC数据是每个图像文件对应一个同名的xml文件,xml文件中标记物体框的坐标和类别等信息。
  • COCO采用的[x1,y1,w,h],表示物体的最小外接矩形框,COCO数据是COCO比赛使用的数据。以json文件记录数据格式。
    LabelImg可以标注VOC格式的数据,对图像做目标框的标注。
    本文的数据集既包含:voc格式,也包含coco格式。

2. 软件运行

  1. 获取源码

  2. 依赖环境下载

python 复制代码
conda create -n yolov10 python=3.9
conda activate yolov10
 1.切换到yolov10源码根目录下,安装依赖
注意:会自动根据你是否有GPU自动选择pytorch版本进行按照,这里不需要自己去选择pytorch和cuda
pip install -r requirements.txt -i https://pypi.doubanio.com/simple
2.运行下面的命令,才可以在命令行使用yolo等命令
pip install -e .

python train.py
  1. 源码运行
python 复制代码
python main.py
  1. 图片检测演示

  2. 摄像头检测演示

YOlov10餐盘菜品目标检测

3. 模型训练&训练结果评估

详见:【深度学习】深度学习模型训练结果分析及效果评估以及Yolo训练结果解释

上文包括:混淆矩阵、查准率和召回率、单一类准确率等 概念的解释以及示例

4. 源码讲解

  1. 模型加载

  2. 读取图片,推理画框

  3. 启动摄像头

  4. 获取摄像头视频帧,推理画框

相关推荐
菩提树下的凡夫几秒前
DINOv2工业缺陷异常检测算特征提取模型介绍
人工智能·目标检测
小鸡吃米…2 分钟前
机器学习 - 对抗性机器学习
人工智能·python·机器学习
蓝海星梦3 分钟前
GRPO 算法演进——奖励设计篇
论文阅读·人工智能·深度学习·算法·自然语言处理·强化学习
qyr67895 分钟前
废物转化为能源全球市场分析报告
大数据·人工智能·能源·市场分析·市场报告·废物转化为能源·废物能源
我材不敲代码7 分钟前
深度学习的准备工作:CUDA安装配置、pytorch库、torchvision库、torchaudio库安装
人工智能·pytorch·深度学习
格林威7 分钟前
Baumer相机系统延迟测量与补偿:保障实时控制同步性的 5 个核心方法,附 OpenCV+Halcon 实战代码!
人工智能·数码相机·opencv·算法·计算机视觉·视觉检测·工业相机
喜欢吃豆7 分钟前
Ralph 架构深度解析报告:自主代理循环与软件工程的确定性重构
人工智能·重构·架构·大模型·软件工程
喜欢吃豆7 分钟前
构建下一代语境感知型 AI Agent:AGENTS.md 与 SKILL.md 发现系统的深度工程架构报告
人工智能·架构
uesowys8 分钟前
Apache Spark算法开发指导-Gradient-boosted tree classifier
人工智能·算法·spark
yhdata9 分钟前
2032年,数字化X线平板探测器市场规模有望接近189.8亿元
大数据·人工智能