OpenCV视觉分析之运动分析(5)背景减除类BackgroundSubtractorMOG2的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

基于高斯混合模型的背景/前景分割算法。

该类实现了在文献[320][319]中描述的高斯混合模型背景减除。

cv::BackgroundSubtractorMOG2 类是 OpenCV 中用于背景减除的一种实现方式,它基于 Gaussian Mixture Model with a recursive algorithm (GMM) 来估计背景模型。这种模型对于动态场景下的背景减除非常有效,因为它可以适应背景的变化并且对光照变化有一定的鲁棒性。

主要成员函数

函数apply()

计算一个前景掩码

函数原型
cpp 复制代码
virtual void cv::BackgroundSubtractorMOG2::apply
(
	InputArray 	image,
	OutputArray 	fgmask,
	double 	learningRate = -1 
)		
参数
  • 参数image 下一个视频帧。浮点帧将不经缩放直接使用,且应处于[0,255]范围内。
  • 参数fgmask 作为8位二值图像的输出前景掩码。
  • 参数learningRate 取值范围在0到1之间,表示背景模型的学习速度。参数的负值会使算法使用某种自动选择的学习率。0意味着背景模型完全不更新,1意味着背景模型将完全重新初始化为最近一帧的状态。

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

int main( int argc, char** argv )
{
    // 创建一个 BackgroundSubtractorMOG2 对象
    cv::Ptr< cv::BackgroundSubtractor > pBackSub = cv::createBackgroundSubtractorMOG2( 500,  // 设置历史帧数
                                                                                       16,   // 设置方差阈值
                                                                                       true  // 启用阴影检测
    );

    // 打开视频文件
    cv::VideoCapture capture( 0);
    if ( !capture.isOpened() )
    {
        std::cerr << "Failed to open video file." << std::endl;
        return -1;
    }

    // 读取每一帧并处理
    cv::Mat frame, fgMask;
    while ( capture.read( frame ) )
    {
        // 应用背景减除
        pBackSub->apply( frame, fgMask );

        // 显示结果
        cv::imshow( "Frame", frame );
        cv::imshow( "FG Mask", fgMask );

        // 按 'q' 键退出
        if ( cv::waitKey( 30 ) == 'q' )
        {
            break;
        }
    }

    // 释放资源
    capture.release();
    cv::destroyAllWindows();

    return 0;
}

运行结果

效果比BackgroundSubtractorKNN好很多

相关推荐
不去幼儿园26 分钟前
【MARL】深入理解多智能体近端策略优化(MAPPO)算法与调参
人工智能·python·算法·机器学习·强化学习
想成为高手49932 分钟前
生成式AI在教育技术中的应用:变革与创新
人工智能·aigc
YSGZJJ1 小时前
股指期货的套保策略如何精准选择和规避风险?
人工智能·区块链
无脑敲代码,bug漫天飞1 小时前
COR 损失函数
人工智能·机器学习
HPC_fac130520678162 小时前
以科学计算为切入点:剖析英伟达服务器过热难题
服务器·人工智能·深度学习·机器学习·计算机视觉·数据挖掘·gpu算力
安静读书5 小时前
Python解析视频FPS(帧率)、分辨率信息
python·opencv·音视频
小陈phd5 小时前
OpenCV从入门到精通实战(九)——基于dlib的疲劳监测 ear计算
人工智能·opencv·计算机视觉
Guofu_Liao6 小时前
大语言模型---LoRA简介;LoRA的优势;LoRA训练步骤;总结
人工智能·语言模型·自然语言处理·矩阵·llama
ZHOU_WUYI10 小时前
3.langchain中的prompt模板 (few shot examples in chat models)
人工智能·langchain·prompt
如若12310 小时前
主要用于图像的颜色提取、替换以及区域修改
人工智能·opencv·计算机视觉