OpenCV视觉分析之运动分析(5)背景减除类BackgroundSubtractorMOG2的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

基于高斯混合模型的背景/前景分割算法。

该类实现了在文献[320][319]中描述的高斯混合模型背景减除。

cv::BackgroundSubtractorMOG2 类是 OpenCV 中用于背景减除的一种实现方式,它基于 Gaussian Mixture Model with a recursive algorithm (GMM) 来估计背景模型。这种模型对于动态场景下的背景减除非常有效,因为它可以适应背景的变化并且对光照变化有一定的鲁棒性。

主要成员函数

函数apply()

计算一个前景掩码

函数原型
cpp 复制代码
virtual void cv::BackgroundSubtractorMOG2::apply
(
	InputArray 	image,
	OutputArray 	fgmask,
	double 	learningRate = -1 
)		
参数
  • 参数image 下一个视频帧。浮点帧将不经缩放直接使用,且应处于[0,255]范围内。
  • 参数fgmask 作为8位二值图像的输出前景掩码。
  • 参数learningRate 取值范围在0到1之间,表示背景模型的学习速度。参数的负值会使算法使用某种自动选择的学习率。0意味着背景模型完全不更新,1意味着背景模型将完全重新初始化为最近一帧的状态。

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

int main( int argc, char** argv )
{
    // 创建一个 BackgroundSubtractorMOG2 对象
    cv::Ptr< cv::BackgroundSubtractor > pBackSub = cv::createBackgroundSubtractorMOG2( 500,  // 设置历史帧数
                                                                                       16,   // 设置方差阈值
                                                                                       true  // 启用阴影检测
    );

    // 打开视频文件
    cv::VideoCapture capture( 0);
    if ( !capture.isOpened() )
    {
        std::cerr << "Failed to open video file." << std::endl;
        return -1;
    }

    // 读取每一帧并处理
    cv::Mat frame, fgMask;
    while ( capture.read( frame ) )
    {
        // 应用背景减除
        pBackSub->apply( frame, fgMask );

        // 显示结果
        cv::imshow( "Frame", frame );
        cv::imshow( "FG Mask", fgMask );

        // 按 'q' 键退出
        if ( cv::waitKey( 30 ) == 'q' )
        {
            break;
        }
    }

    // 释放资源
    capture.release();
    cv::destroyAllWindows();

    return 0;
}

运行结果

效果比BackgroundSubtractorKNN好很多

相关推荐
时见先生13 小时前
Python库和conda搭建虚拟环境
开发语言·人工智能·python·自然语言处理·conda
昨夜见军贴061615 小时前
IACheck AI审核在生产型企业质量控制记录中的实践探索——全面赋能有关物质研究合规升级
大数据·人工智能
智星云算力15 小时前
智星云镜像共享全流程指南,附避坑手册(新手必看)
人工智能
盖雅工场15 小时前
驱动千店销售转化提升10%:3C零售门店的人效优化实战方案
大数据·人工智能·零售·数字化管理·智能排班·零售排班
Loo国昌15 小时前
深入理解 FastAPI:Python高性能API框架的完整指南
开发语言·人工智能·后端·python·langchain·fastapi
发哥来了15 小时前
【AI视频创作】【评测】【核心能力与成本效益】
大数据·人工智能
醉舞经阁半卷书116 小时前
Python机器学习常用库快速精通
人工智能·python·深度学习·机器学习·数据挖掘·数据分析·scikit-learn
产品何同学17 小时前
在线问诊医疗APP如何设计?2套原型拆解与AI生成原型图实战
人工智能·产品经理·健康医疗·在线问诊·app原型·ai生成原型图·医疗app
星爷AG I17 小时前
9-14 知觉整合(AGI基础理论)
人工智能·agi
开源技术17 小时前
Violit: Streamlit杀手,无需全局刷新,构建AI面板
人工智能·python