pytorch 交叉熵损失函数 BCELoss

BCE Loss

交叉熵损失函数计算公式:

BCE Loss = - 1/n*(y_actual * log(y_pred) + (1 - y_actual) * log(1 - y_pred))

t[i]为标签值:0或者1

o[i]是经过sigmoid后的概率值

BCEWithLogitsLoss

这个损失将Sigmoid层和BCELoss合并在一个类中。

BCEWithLogitsLoss`(weight=None, size_average=None, reduce=None, reduction='mean', pos_weight=None)

python 复制代码
import torch
from torch import autograd
input = autograd.Variable(torch.tensor([[ 1.9072,  1.1079,  1.4906],
        [-0.6584, -0.0512,  0.7608],
        [-0.0614,  0.6583,  0.1095]]), requires_grad=True)
print(input)
print('-'*100)

from torch import nn
m = nn.Sigmoid()
print(m(input))
print('-'*100)

target = torch.FloatTensor([[0, 1, 1], [1, 1, 1], [0, 0, 0]])
print(target)
print('-'*100)

import math

r11 = 0 * math.log(0.8707) + (1-0) * math.log((1 - 0.8707))
r12 = 1 * math.log(0.7517) + (1-1) * math.log((1 - 0.7517))
r13 = 1 * math.log(0.8162) + (1-1) * math.log((1 - 0.8162))

r21 = 1 * math.log(0.3411) + (1-1) * math.log((1 - 0.3411))
r22 = 1 * math.log(0.4872) + (1-1) * math.log((1 - 0.4872))
r23 = 1 * math.log(0.6815) + (1-1) * math.log((1 - 0.6815))

r31 = 0 * math.log(0.4847) + (1-0) * math.log((1 - 0.4847))
r32 = 0 * math.log(0.6589) + (1-0) * math.log((1 - 0.6589))
r33 = 0 * math.log(0.5273) + (1-0) * math.log((1 - 0.5273))

r1 = -(r11 + r12 + r13) / 3
#0.8447112733378236
r2 = -(r21 + r22 + r23) / 3
#0.7260397266631787
r3 = -(r31 + r32 + r33) / 3
#0.8292933181294807
bceloss = (r1 + r2 + r3) / 3 
print(bceloss)
print('-'*100)

loss = nn.BCELoss()
print(loss(m(input), target))
print('-'*100)

loss = nn.BCEWithLogitsLoss()
print(loss(input, target))

结果

原始的3x3矩阵:

tensor([[ 1.9072, 1.1079, 1.4906],

[-0.6584, -0.0512, 0.7608],

[-0.0614, 0.6583, 0.1095]], requires_grad=True)


使用Sigmoid矩阵进行计算:

tensor([[0.8707, 0.7517, 0.8162],

[0.3411, 0.4872, 0.6815],

[0.4847, 0.6589, 0.5273]], grad_fn=<SigmoidBackward0>)


二分类标签:

tensor([[0., 1., 1.],

[1., 1., 1.],

[0., 0., 0.]])


手动计算的结果:

0.8000147727101611


使用BCE Loss对sigmoid后的计算的结果:

tensor(0.8000, grad_fn=<BinaryCrossEntropyBackward0>)


使用BCEWithLogitsLoss直接对原始数据计算的结果:

tensor(0.8000, grad_fn=<BinaryCrossEntropyWithLogitsBackward0>)

相关推荐
volcanical32 分钟前
Dataset Distillation with Attention Labels for Fine-tuning BERT
人工智能·深度学习·bert
轻口味2 小时前
【每日学点鸿蒙知识】沙箱目录、图片压缩、characteristicsArray、gm-crypto 国密加解密、通知权限
pytorch·华为·harmonyos
Captain823Jack3 小时前
nlp新词发现——浅析 TF·IDF
人工智能·python·深度学习·神经网络·算法·自然语言处理
Captain823Jack4 小时前
w04_nlp大模型训练·中文分词
人工智能·python·深度学习·神经网络·算法·自然语言处理·中文分词
Wishell20154 小时前
Pytorch文件夹结构
pytorch
itwangyang5204 小时前
AIDD - 从机器学习到深度学习:蛋白质-配体对接评分函数的进展
人工智能·深度学习·机器学习
mingo_敏5 小时前
深度学习中的并行策略概述:2 Data Parallelism
人工智能·深度学习
Jack_pirate7 小时前
深度学习中的特征到底是什么?
人工智能·深度学习
微凉的衣柜7 小时前
微软在AI时代的战略布局和挑战
人工智能·深度学习·microsoft
哦哦~9218 小时前
深度学习驱动的油气开发技术与应用
大数据·人工智能·深度学习·学习