pytorch 交叉熵损失函数 BCELoss

BCE Loss

交叉熵损失函数计算公式:

BCE Loss = - 1/n*(y_actual * log(y_pred) + (1 - y_actual) * log(1 - y_pred))

t[i]为标签值:0或者1

o[i]是经过sigmoid后的概率值

BCEWithLogitsLoss

这个损失将Sigmoid层和BCELoss合并在一个类中。

BCEWithLogitsLoss`(weight=None, size_average=None, reduce=None, reduction='mean', pos_weight=None)

python 复制代码
import torch
from torch import autograd
input = autograd.Variable(torch.tensor([[ 1.9072,  1.1079,  1.4906],
        [-0.6584, -0.0512,  0.7608],
        [-0.0614,  0.6583,  0.1095]]), requires_grad=True)
print(input)
print('-'*100)

from torch import nn
m = nn.Sigmoid()
print(m(input))
print('-'*100)

target = torch.FloatTensor([[0, 1, 1], [1, 1, 1], [0, 0, 0]])
print(target)
print('-'*100)

import math

r11 = 0 * math.log(0.8707) + (1-0) * math.log((1 - 0.8707))
r12 = 1 * math.log(0.7517) + (1-1) * math.log((1 - 0.7517))
r13 = 1 * math.log(0.8162) + (1-1) * math.log((1 - 0.8162))

r21 = 1 * math.log(0.3411) + (1-1) * math.log((1 - 0.3411))
r22 = 1 * math.log(0.4872) + (1-1) * math.log((1 - 0.4872))
r23 = 1 * math.log(0.6815) + (1-1) * math.log((1 - 0.6815))

r31 = 0 * math.log(0.4847) + (1-0) * math.log((1 - 0.4847))
r32 = 0 * math.log(0.6589) + (1-0) * math.log((1 - 0.6589))
r33 = 0 * math.log(0.5273) + (1-0) * math.log((1 - 0.5273))

r1 = -(r11 + r12 + r13) / 3
#0.8447112733378236
r2 = -(r21 + r22 + r23) / 3
#0.7260397266631787
r3 = -(r31 + r32 + r33) / 3
#0.8292933181294807
bceloss = (r1 + r2 + r3) / 3 
print(bceloss)
print('-'*100)

loss = nn.BCELoss()
print(loss(m(input), target))
print('-'*100)

loss = nn.BCEWithLogitsLoss()
print(loss(input, target))

结果

原始的3x3矩阵:

tensor([[ 1.9072, 1.1079, 1.4906],

-0.6584, -0.0512, 0.7608\], \[-0.0614, 0.6583, 0.1095\]\], requires_grad=True) ---------------------------------------------------------------------------------------------------- ### 使用Sigmoid矩阵进行计算: tensor(\[\[0.8707, 0.7517, 0.8162\], \[0.3411, 0.4872, 0.6815\], \[0.4847, 0.6589, 0.5273\]\], grad_fn=\) ---------------------------------------------------------------------------------------------------- ### 二分类标签: tensor(\[\[0., 1., 1.\], \[1., 1., 1.\], \[0., 0., 0.\]\]) ---------------------------------------------------------------------------------------------------- ### 手动计算的结果: 0.8000147727101611 ---------------------------------------------------------------------------------------------------- ### 使用BCE Loss对sigmoid后的计算的结果: tensor(0.8000, grad_fn=\) ---------------------------------------------------------------------------------------------------- ### 使用BCEWithLogitsLoss直接对原始数据计算的结果: tensor(0.8000, grad_fn=\)

相关推荐
Blossom.11827 分钟前
机器学习在智能制造业中的应用:质量检测与设备故障预测
人工智能·深度学习·神经网络·机器学习·机器人·tensorflow·sklearn
烟锁池塘柳01 小时前
【深度学习】强化学习(Reinforcement Learning, RL)主流架构解析
人工智能·深度学习·机器学习
Ronin-Lotus2 小时前
深度学习篇---Yolov系列
人工智能·深度学习
爱学习的茄子2 小时前
AI驱动的单词学习应用:从图片识别到语音合成的完整实现
前端·深度学习·react.js
晓13134 小时前
第七章 OpenCV篇——角点检测与特征检测
人工智能·深度学习·计算机视觉
William.csj6 小时前
Pytorch/CUDA——flash-attn 库编译的 gcc 版本问题
pytorch·cuda
victory04317 小时前
SpiceMix enables integrative single-cell spatial modeling of cell identity 文章解读
人工智能·深度学习
AI街潜水的八角9 小时前
深度学习图像分类数据集—蘑菇识别分类
人工智能·深度学习·分类
蹦蹦跳跳真可爱58910 小时前
Python----循环神经网络(Transformer ----注意力机制)
人工智能·深度学习·nlp·transformer·循环神经网络
千宇宙航15 小时前
闲庭信步使用SV搭建图像测试平台:第三十一课——基于神经网络的手写数字识别
图像处理·人工智能·深度学习·神经网络·计算机视觉·fpga开发