pytorch 交叉熵损失函数 BCELoss

BCE Loss

交叉熵损失函数计算公式:

BCE Loss = - 1/n*(y_actual * log(y_pred) + (1 - y_actual) * log(1 - y_pred))

t[i]为标签值:0或者1

o[i]是经过sigmoid后的概率值

BCEWithLogitsLoss

这个损失将Sigmoid层和BCELoss合并在一个类中。

BCEWithLogitsLoss`(weight=None, size_average=None, reduce=None, reduction='mean', pos_weight=None)

python 复制代码
import torch
from torch import autograd
input = autograd.Variable(torch.tensor([[ 1.9072,  1.1079,  1.4906],
        [-0.6584, -0.0512,  0.7608],
        [-0.0614,  0.6583,  0.1095]]), requires_grad=True)
print(input)
print('-'*100)

from torch import nn
m = nn.Sigmoid()
print(m(input))
print('-'*100)

target = torch.FloatTensor([[0, 1, 1], [1, 1, 1], [0, 0, 0]])
print(target)
print('-'*100)

import math

r11 = 0 * math.log(0.8707) + (1-0) * math.log((1 - 0.8707))
r12 = 1 * math.log(0.7517) + (1-1) * math.log((1 - 0.7517))
r13 = 1 * math.log(0.8162) + (1-1) * math.log((1 - 0.8162))

r21 = 1 * math.log(0.3411) + (1-1) * math.log((1 - 0.3411))
r22 = 1 * math.log(0.4872) + (1-1) * math.log((1 - 0.4872))
r23 = 1 * math.log(0.6815) + (1-1) * math.log((1 - 0.6815))

r31 = 0 * math.log(0.4847) + (1-0) * math.log((1 - 0.4847))
r32 = 0 * math.log(0.6589) + (1-0) * math.log((1 - 0.6589))
r33 = 0 * math.log(0.5273) + (1-0) * math.log((1 - 0.5273))

r1 = -(r11 + r12 + r13) / 3
#0.8447112733378236
r2 = -(r21 + r22 + r23) / 3
#0.7260397266631787
r3 = -(r31 + r32 + r33) / 3
#0.8292933181294807
bceloss = (r1 + r2 + r3) / 3 
print(bceloss)
print('-'*100)

loss = nn.BCELoss()
print(loss(m(input), target))
print('-'*100)

loss = nn.BCEWithLogitsLoss()
print(loss(input, target))

结果

原始的3x3矩阵:

tensor([[ 1.9072, 1.1079, 1.4906],

-0.6584, -0.0512, 0.7608\], \[-0.0614, 0.6583, 0.1095\]\], requires_grad=True) ---------------------------------------------------------------------------------------------------- ### 使用Sigmoid矩阵进行计算: tensor(\[\[0.8707, 0.7517, 0.8162\], \[0.3411, 0.4872, 0.6815\], \[0.4847, 0.6589, 0.5273\]\], grad_fn=\) ---------------------------------------------------------------------------------------------------- ### 二分类标签: tensor(\[\[0., 1., 1.\], \[1., 1., 1.\], \[0., 0., 0.\]\]) ---------------------------------------------------------------------------------------------------- ### 手动计算的结果: 0.8000147727101611 ---------------------------------------------------------------------------------------------------- ### 使用BCE Loss对sigmoid后的计算的结果: tensor(0.8000, grad_fn=\) ---------------------------------------------------------------------------------------------------- ### 使用BCEWithLogitsLoss直接对原始数据计算的结果: tensor(0.8000, grad_fn=\)

相关推荐
じ☆冷颜〃1 小时前
黎曼几何驱动的算法与系统设计:理论、实践与跨领域应用
笔记·python·深度学习·网络协议·算法·机器学习
HyperAI超神经2 小时前
【vLLM 学习】Rlhf
人工智能·深度学习·学习·机器学习·vllm
lambo mercy2 小时前
深度学习3:新冠病毒感染人数预测
人工智能·深度学习
Echo_NGC22372 小时前
【神经视频编解码NVC】传统神经视频编解码完全指南:从零读懂 AI 视频压缩的基石
人工智能·深度学习·算法·机器学习·视频编解码
数据皮皮侠AI3 小时前
上市公司股票名称相似度(1990-2025)
大数据·人工智能·笔记·区块链·能源·1024程序员节
哥布林学者3 小时前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (四)RNN 中的梯度现象
深度学习·ai
雍凉明月夜3 小时前
深度学习网络笔记Ⅳ(Transformer + VIT)
笔记·深度学习·transformer
de之梦-御风5 小时前
【深度学习】模型从训练完成到产线运行的完整使用方式
人工智能·深度学习
_codemonster5 小时前
深度学习实战(基于pytroch)系列完整目录
人工智能·深度学习
Chris_12196 小时前
Halcon学习笔记-Day6进阶:工业级视觉系统核心技术详解
人工智能·python·深度学习·halcon