Pytorch学习--如何下载及使用Pytorch中自带数据集,如何把数据集和transforms联合在一起使用

一、标准数据集使用

pytorch官网--标准数据集

这里以CIFAR10数据集为例:CIFAR10

下载数据集

代码:

python 复制代码
import torchvision
train_data=torchvision.datasets.CIFAR10(root="datasets",train=True,download=True)
test_data=torchvision.datasets.CIFAR10(root="datasets",train=False,download=True)

输出:

python 复制代码
Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to datasets\cifar-10-python.tar.gz
100%|██████████| 170498071/170498071 [00:30<00:00, 5675896.90it/s]
Extracting datasets\cifar-10-python.tar.gz to datasets
Files already downloaded and verified

查看数据集属性

python 复制代码
import torchvision
train_data=torchvision.datasets.CIFAR10(root="datasets",train=True,download=True)
test_data=torchvision.datasets.CIFAR10(root="datasets",train=False,download=True)
print("test_data")
print(test_data)
print("test_data[0]")
print(test_data[0])
img,target=test_data[0]
img.show()
print(test_data.classes[target])

输出:

test_data 的属性:善用debug

二、把读入的数据集都转换为Tensor类型,并用Tensorboard展示

代码:

python 复制代码
import torchvision
from torch.utils.tensorboard import SummaryWriter
trans_dataset=torchvision.transforms.Compose([torchvision.transforms.ToTensor()])
train_data=torchvision.datasets.CIFAR10(root="datasets",train=True,transform=trans_dataset,download=True)
test_data=torchvision.datasets.CIFAR10(root="datasets",train=False,transform=trans_dataset,download=True)
# print("test_data")
# print(test_data)
# print("test_data[0]")
# print(test_data[0])
# img,target=test_data[0]
# img.show()
# print(test_data.classes[target])

writer=SummaryWriter("logs")
writer.add_image("test",test_data[0][0],1)
writer.close()

输出:

相关推荐
tyatyatya17 分钟前
MATLAB中进行深度学习网络训练的模型评估步骤
网络·深度学习·matlab
说私域22 分钟前
基于开源AI智能名片链动2+1模式S2B2C商城小程序源码的去中心化商业扩散研究
人工智能·小程序·开源·去中心化·零售
Johny_Zhao1 小时前
Vmware workstation安装部署微软WSUS服务应用系统
网络·人工智能·网络安全·信息安全·云计算·系统运维·wsus
carpell1 小时前
【语义分割专栏】:FCN原理篇
人工智能·深度学习·计算机视觉·语义分割
满怀10153 小时前
【生成式AI文本生成实战】从GPT原理到企业级应用开发
人工智能·gpt
微刻时光3 小时前
影刀处理 Excel:智能工具带来的高效变革
人工智能·python·低代码·自动化·excel·rpa·影刀rpa
聚客AI5 小时前
ChatGPT到Claude全适配:跨模型Prompt高级设计规范与迁移技巧
人工智能·机器学习·语言模型·自然语言处理·langchain·transformer·llama
小羊Linux客栈5 小时前
自动化:批量文件重命名
运维·人工智能·python·自动化·游戏程序
Mr数据杨9 小时前
【Dv3Admin】插件 dv3admin_chatgpt 集成大语言模型智能模块
人工智能·语言模型·chatgpt
zm-v-159304339869 小时前
AI 赋能 Copula 建模:大语言模型驱动的相关性分析革新
人工智能·语言模型·自然语言处理