Pytorch学习--如何下载及使用Pytorch中自带数据集,如何把数据集和transforms联合在一起使用

一、标准数据集使用

pytorch官网--标准数据集

这里以CIFAR10数据集为例:CIFAR10

下载数据集

代码:

python 复制代码
import torchvision
train_data=torchvision.datasets.CIFAR10(root="datasets",train=True,download=True)
test_data=torchvision.datasets.CIFAR10(root="datasets",train=False,download=True)

输出:

python 复制代码
Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to datasets\cifar-10-python.tar.gz
100%|██████████| 170498071/170498071 [00:30<00:00, 5675896.90it/s]
Extracting datasets\cifar-10-python.tar.gz to datasets
Files already downloaded and verified

查看数据集属性

python 复制代码
import torchvision
train_data=torchvision.datasets.CIFAR10(root="datasets",train=True,download=True)
test_data=torchvision.datasets.CIFAR10(root="datasets",train=False,download=True)
print("test_data")
print(test_data)
print("test_data[0]")
print(test_data[0])
img,target=test_data[0]
img.show()
print(test_data.classes[target])

输出:

test_data 的属性:善用debug

二、把读入的数据集都转换为Tensor类型,并用Tensorboard展示

代码:

python 复制代码
import torchvision
from torch.utils.tensorboard import SummaryWriter
trans_dataset=torchvision.transforms.Compose([torchvision.transforms.ToTensor()])
train_data=torchvision.datasets.CIFAR10(root="datasets",train=True,transform=trans_dataset,download=True)
test_data=torchvision.datasets.CIFAR10(root="datasets",train=False,transform=trans_dataset,download=True)
# print("test_data")
# print(test_data)
# print("test_data[0]")
# print(test_data[0])
# img,target=test_data[0]
# img.show()
# print(test_data.classes[target])

writer=SummaryWriter("logs")
writer.add_image("test",test_data[0][0],1)
writer.close()

输出:

相关推荐
明月照山海-1 分钟前
机器学习周报二十四
人工智能·机器学习·计算机视觉
忆湫淮2 分钟前
ENVI 5.6 利用现场标准校准板计算地表反射率具体步骤
大数据·人工智能·算法
lpfasd1233 分钟前
现有版权在未来的价值:AI 泛滥时代的人类内容黄金
大数据·人工智能
cyyt3 分钟前
深度学习周报(11.24~11.30)
人工智能·深度学习
丝斯20113 分钟前
AI学习笔记整理(24)—— AI核心技术(深度学习8)
人工智能·笔记·学习
腾讯云开发者9 分钟前
架构火花|一线视角下的AI:从应用边界到落地难题
人工智能
Blossom.1189 分钟前
基于Mamba-2的实时销量预测系统:如何用选择性状态空间干掉Transformer的O(n²)噩梦
人工智能·python·深度学习·react.js·机器学习·设计模式·transformer
Mintopia10 分钟前
AIGC 技术标准制定:Web 行业协同的必要性与难点
人工智能·aigc·trae
Wise玩转AI12 分钟前
Day 26|智能体的“伦理与安全边界”
人工智能·python·安全·ai·chatgpt·ai智能体
极速learner13 分钟前
n8n本地安装的两种方法:小白入门大白话版本
人工智能·prompt