python 深度神经网络 归一化后的数据还原 pytorch ,tensorflow

归一化后的数据还原是指将经过Min-Max归一化处理的数据恢复到原始的尺度。这需要使用归一化时的最小值和最大值。如果你在使用MinMaxScaler进行归一化,可以通过inverse_transform方法来还原数据。

假设你有一组归一化后的数据和一个MinMaxScaler对象,你可以按照以下步骤进行还原:

复制代码

python

复制代码
from sklearn.preprocessing import MinMaxScaler
import numpy as np

# 假设这是归一化后的数据
normalized_data = np.array([[0.5], [0.2], [0.9]])

# 实例化MinMaxScaler
# 注意:这里需要使用归一化时相同的feature_range
scaler = MinMaxScaler(feature_range=(0, 1))

# 假设我们知道归一化时数据的原始最小值和最大值
# 这些值通常在归一化时保存,或者从归一化的数据集中获得
original_min = np.array([10, -5.5, 3])
original_max = np.array([12, 0, 9])

# 先对MinMaxScaler进行拟合
scaler.fit(original_min.reshape(-1, 1), original_max.reshape(-1, 1))

# 还原归一化的数据
original_data = scaler.inverse_transform(normalized_data)

print(original_data)

在这个例子中,original_minoriginal_max是归一化之前数据的最小值和最大值。在实际应用中,你应该在归一化数据时保存这些值,以便后续还原使用。

inverse_transform方法接受归一化后的数据,并将其还原到原始的尺度。这个过程是归一化过程的逆过程,使用了之前计算的最小值和最大值。

相关推荐
橘颂TA29 分钟前
【剑斩OFFER】算法的暴力美学——翻转对
算法·排序算法·结构与算法
叠叠乐30 分钟前
robot_state_publisher 参数
java·前端·算法
hweiyu0041 分钟前
排序算法:冒泡排序
算法·排序算法
brave and determined1 小时前
CANN训练营 学习(day9)昇腾AscendC算子开发实战:从零到性能冠军
人工智能·算法·机器学习·ai·开发环境·算子开发·昇腾ai
Dave.B1 小时前
用【vtk3DLinearGridCrinkleExtractor】快速提取3D网格相交面
算法·3d·vtk
yaoh.wang1 小时前
力扣(LeetCode) 1: 两数之和 - 解法思路
python·程序人生·算法·leetcode·面试·跳槽·哈希算法
Code Slacker2 小时前
LeetCode Hot100 —— 滑动窗口(面试纯背版)(四)
数据结构·c++·算法·leetcode
brave and determined2 小时前
CANN训练营 学习(day8)昇腾大模型推理调优实战指南
人工智能·算法·机器学习·ai实战·昇腾ai·ai推理·实战记录
总爱写点小BUG3 小时前
打印不同的三角形(C语言)
java·c语言·算法
yaoh.wang3 小时前
力扣(LeetCode) 27: 移除元素 - 解法思路
python·程序人生·算法·leetcode·面试·职场和发展·双指针