python 深度神经网络 归一化后的数据还原 pytorch ,tensorflow

归一化后的数据还原是指将经过Min-Max归一化处理的数据恢复到原始的尺度。这需要使用归一化时的最小值和最大值。如果你在使用MinMaxScaler进行归一化,可以通过inverse_transform方法来还原数据。

假设你有一组归一化后的数据和一个MinMaxScaler对象,你可以按照以下步骤进行还原:

复制代码

python

复制代码
from sklearn.preprocessing import MinMaxScaler
import numpy as np

# 假设这是归一化后的数据
normalized_data = np.array([[0.5], [0.2], [0.9]])

# 实例化MinMaxScaler
# 注意:这里需要使用归一化时相同的feature_range
scaler = MinMaxScaler(feature_range=(0, 1))

# 假设我们知道归一化时数据的原始最小值和最大值
# 这些值通常在归一化时保存,或者从归一化的数据集中获得
original_min = np.array([10, -5.5, 3])
original_max = np.array([12, 0, 9])

# 先对MinMaxScaler进行拟合
scaler.fit(original_min.reshape(-1, 1), original_max.reshape(-1, 1))

# 还原归一化的数据
original_data = scaler.inverse_transform(normalized_data)

print(original_data)

在这个例子中,original_minoriginal_max是归一化之前数据的最小值和最大值。在实际应用中,你应该在归一化数据时保存这些值,以便后续还原使用。

inverse_transform方法接受归一化后的数据,并将其还原到原始的尺度。这个过程是归一化过程的逆过程,使用了之前计算的最小值和最大值。

相关推荐
Dev7z33 分钟前
基于MATLAB数学形态学的边缘检测算法仿真实现
算法·计算机视觉·matlab
风筝在晴天搁浅7 小时前
代码随想录 718.最长重复子数组
算法
kyle~7 小时前
算法---回溯算法
算法
star _chen7 小时前
C++实现完美洗牌算法
开发语言·c++·算法
hzxxxxxxx8 小时前
1234567
算法
Sylvia-girl8 小时前
数据结构之复杂度
数据结构·算法
CQ_YM8 小时前
数据结构之队列
c语言·数据结构·算法·
VekiSon8 小时前
数据结构与算法——树和哈希表
数据结构·算法
大江东去浪淘尽千古风流人物10 小时前
【DSP】向量化操作的误差来源分析及其经典解决方案
linux·运维·人工智能·算法·vr·dsp开发·mr
Unstoppable2210 小时前
代码随想录算法训练营第 56 天 | 拓扑排序精讲、Dijkstra(朴素版)精讲
java·数据结构·算法·