python 深度神经网络 归一化后的数据还原 pytorch ,tensorflow

归一化后的数据还原是指将经过Min-Max归一化处理的数据恢复到原始的尺度。这需要使用归一化时的最小值和最大值。如果你在使用MinMaxScaler进行归一化,可以通过inverse_transform方法来还原数据。

假设你有一组归一化后的数据和一个MinMaxScaler对象,你可以按照以下步骤进行还原:

复制代码

python

复制代码
from sklearn.preprocessing import MinMaxScaler
import numpy as np

# 假设这是归一化后的数据
normalized_data = np.array([[0.5], [0.2], [0.9]])

# 实例化MinMaxScaler
# 注意:这里需要使用归一化时相同的feature_range
scaler = MinMaxScaler(feature_range=(0, 1))

# 假设我们知道归一化时数据的原始最小值和最大值
# 这些值通常在归一化时保存,或者从归一化的数据集中获得
original_min = np.array([10, -5.5, 3])
original_max = np.array([12, 0, 9])

# 先对MinMaxScaler进行拟合
scaler.fit(original_min.reshape(-1, 1), original_max.reshape(-1, 1))

# 还原归一化的数据
original_data = scaler.inverse_transform(normalized_data)

print(original_data)

在这个例子中,original_minoriginal_max是归一化之前数据的最小值和最大值。在实际应用中,你应该在归一化数据时保存这些值,以便后续还原使用。

inverse_transform方法接受归一化后的数据,并将其还原到原始的尺度。这个过程是归一化过程的逆过程,使用了之前计算的最小值和最大值。

相关推荐
瓦力wow5 分钟前
c语言 写一个五子棋
c语言·c++·算法
X-future4265 分钟前
院校机试刷题第六天:1134矩阵翻转、1052学生成绩管理、1409对称矩阵
线性代数·算法·矩阵
Codeking__26 分钟前
前缀和——中心数组下标
数据结构·算法
爱喝热水的呀哈喽38 分钟前
非线性1无修
算法
花火QWQ1 小时前
图论模板(部分)
c语言·数据结构·c++·算法·图论
Pacify_The_North1 小时前
【进程控制二】进程替换和bash解释器
linux·c语言·开发语言·算法·ubuntu·centos·bash
轮到我狗叫了2 小时前
力扣310.最小高度树(拓扑排序,无向图),力扣.加油站力扣.矩阵置零力扣.二叉树中的最大路径和
算法·leetcode·职场和发展
埃菲尔铁塔_CV算法2 小时前
深度学习驱动下的目标检测技术:原理、算法与应用创新(二)
深度学习·算法·目标检测
wuqingshun3141592 小时前
经典算法 (A/B) mod C
c语言·开发语言·c++·算法·蓝桥杯
白杆杆红伞伞2 小时前
04_决策树
算法·决策树·机器学习