python 深度神经网络 归一化后的数据还原 pytorch ,tensorflow

归一化后的数据还原是指将经过Min-Max归一化处理的数据恢复到原始的尺度。这需要使用归一化时的最小值和最大值。如果你在使用MinMaxScaler进行归一化,可以通过inverse_transform方法来还原数据。

假设你有一组归一化后的数据和一个MinMaxScaler对象,你可以按照以下步骤进行还原:

复制代码

python

复制代码
from sklearn.preprocessing import MinMaxScaler
import numpy as np

# 假设这是归一化后的数据
normalized_data = np.array([[0.5], [0.2], [0.9]])

# 实例化MinMaxScaler
# 注意:这里需要使用归一化时相同的feature_range
scaler = MinMaxScaler(feature_range=(0, 1))

# 假设我们知道归一化时数据的原始最小值和最大值
# 这些值通常在归一化时保存,或者从归一化的数据集中获得
original_min = np.array([10, -5.5, 3])
original_max = np.array([12, 0, 9])

# 先对MinMaxScaler进行拟合
scaler.fit(original_min.reshape(-1, 1), original_max.reshape(-1, 1))

# 还原归一化的数据
original_data = scaler.inverse_transform(normalized_data)

print(original_data)

在这个例子中,original_minoriginal_max是归一化之前数据的最小值和最大值。在实际应用中,你应该在归一化数据时保存这些值,以便后续还原使用。

inverse_transform方法接受归一化后的数据,并将其还原到原始的尺度。这个过程是归一化过程的逆过程,使用了之前计算的最小值和最大值。

相关推荐
地平线开发者5 分钟前
ReID/OSNet 算法模型量化转换实践
算法·自动驾驶
地平线开发者18 分钟前
开发者说|EmbodiedGen:为具身智能打造可交互3D世界生成引擎
算法·自动驾驶
星星火柴9361 小时前
关于“双指针法“的总结
数据结构·c++·笔记·学习·算法
艾莉丝努力练剑2 小时前
【洛谷刷题】用C语言和C++做一些入门题,练习洛谷IDE模式:分支机构(一)
c语言·开发语言·数据结构·c++·学习·算法
C++、Java和Python的菜鸟4 小时前
第六章 统计初步
算法·机器学习·概率论
Cx330❀4 小时前
【数据结构初阶】--排序(五):计数排序,排序算法复杂度对比和稳定性分析
c语言·数据结构·经验分享·笔记·算法·排序算法
散1124 小时前
01数据结构-Prim算法
数据结构·算法·图论
起个昵称吧4 小时前
线程相关编程、线程间通信、互斥锁
linux·算法
myzzb5 小时前
基于uiautomation的自动化流程RPA开源开发演示
运维·python·学习·算法·自动化·rpa
旺小仔.5 小时前
双指针和codetop复习
数据结构·c++·算法