python 深度神经网络 归一化后的数据还原 pytorch ,tensorflow

归一化后的数据还原是指将经过Min-Max归一化处理的数据恢复到原始的尺度。这需要使用归一化时的最小值和最大值。如果你在使用MinMaxScaler进行归一化,可以通过inverse_transform方法来还原数据。

假设你有一组归一化后的数据和一个MinMaxScaler对象,你可以按照以下步骤进行还原:

复制代码

python

复制代码
from sklearn.preprocessing import MinMaxScaler
import numpy as np

# 假设这是归一化后的数据
normalized_data = np.array([[0.5], [0.2], [0.9]])

# 实例化MinMaxScaler
# 注意:这里需要使用归一化时相同的feature_range
scaler = MinMaxScaler(feature_range=(0, 1))

# 假设我们知道归一化时数据的原始最小值和最大值
# 这些值通常在归一化时保存,或者从归一化的数据集中获得
original_min = np.array([10, -5.5, 3])
original_max = np.array([12, 0, 9])

# 先对MinMaxScaler进行拟合
scaler.fit(original_min.reshape(-1, 1), original_max.reshape(-1, 1))

# 还原归一化的数据
original_data = scaler.inverse_transform(normalized_data)

print(original_data)

在这个例子中,original_minoriginal_max是归一化之前数据的最小值和最大值。在实际应用中,你应该在归一化数据时保存这些值,以便后续还原使用。

inverse_transform方法接受归一化后的数据,并将其还原到原始的尺度。这个过程是归一化过程的逆过程,使用了之前计算的最小值和最大值。

相关推荐
im_AMBER12 小时前
Leetcode 121 翻转二叉树 | 二叉树中的最大路径和
数据结构·学习·算法·leetcode
mit6.82413 小时前
二分+贪心
算法
programhelp_13 小时前
特斯拉 MLE 超详细面经 + 避坑
数据结构·人工智能·算法·面试·职场和发展
越甲八千14 小时前
深入了解迭代器erase()之后的失效逻辑
算法
躺柒14 小时前
读人工智能全球格局:未来趋势与中国位势06人类的未来(下)
大数据·人工智能·算法·ai·智能
L_Aria14 小时前
6421. 【NOIP2019模拟11.11】匹配
c++·算法·动态规划
骇城迷影15 小时前
代码随想录:哈希表篇
算法·哈希算法·散列表
智者知已应修善业15 小时前
【PAT乙级真题解惑1012数字分类】2025-3-29
c语言·c++·经验分享·笔记·算法
每天要多喝水15 小时前
动态规划Day30:买卖股票
算法·动态规划
v_for_van16 小时前
力扣刷题记录6(无算法背景,纯C语言)
c语言·算法·leetcode