线性回归简洁实现

1.通过使用深度学习框架来简洁实现线性回归模型生成数据集

复制代码
import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l

true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)

2.调用框架现有API来读取数据

复制代码
def load_array(data_arrays, batch_size, is_train=True):
    """构造Pytorch数据迭代器"""
    dataset = data.TensorDataset(*data_arrays)
    return data.DataLoader(dataset, batch_size, shuffle=is_train)

batch_size=10
data_iter=load_array((features, labels),batch_size)

next(iter(data_iter))

3.使用框架预定义好的层

复制代码
from torch import nn

net = nn.Sequential(nn.Linear(2, 1))

4.初始化模型参数

复制代码
net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)

5.计算均方误差使用的是MSELoss类(平方范式)

复制代码
loss = nn.MSELoss()

6.实例化SGD实例

复制代码
trainer = torch.optim.SGD(net.parameters(), lr=0.03)

7.训练过程代码

复制代码
num_epochs = 3
for epoch in range(num_epochs):
    for X, y in data_iter:
        l = loss(net(X), y)
        trainer.zero_grad()
        l.backward()
        trainer.step()
    l = loss(net(features), labels)
    print(f'epoch{epoch + 1},loss {1:f}')
相关推荐
前端小L28 分钟前
图论专题(十五):BFS的“状态升维”——带着“破壁锤”闯迷宫
数据结构·算法·深度优先·图论·宽度优先
橘颂TA3 小时前
【剑斩OFFER】算法的暴力美学——连续数组
c++·算法·leetcode·结构与算法
星释4 小时前
Rust 练习册 72:多米诺骨牌与回溯算法
开发语言·算法·rust
算法与编程之美6 小时前
提升minist的准确率并探索分类指标Precision,Recall,F1-Score和Accuracy
人工智能·算法·机器学习·分类·数据挖掘
MicroTech20256 小时前
微算法科技(NASDAQ :MLGO)混合共识算法与机器学习技术:重塑区块链安全新范式
科技·算法·区块链
李牧九丶6 小时前
从零学算法1334
前端·算法
在繁华处6 小时前
C语言经典算法:汉诺塔问题
c语言·算法
爪哇部落算法小助手8 小时前
每日两题day50
数据结构·c++·算法
curry____3038 小时前
基本算法(2025.11.21)
c++·算法
自由日记8 小时前
python简单线性回归
开发语言·python·线性回归