线性回归简洁实现

1.通过使用深度学习框架来简洁实现线性回归模型生成数据集

复制代码
import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l

true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)

2.调用框架现有API来读取数据

复制代码
def load_array(data_arrays, batch_size, is_train=True):
    """构造Pytorch数据迭代器"""
    dataset = data.TensorDataset(*data_arrays)
    return data.DataLoader(dataset, batch_size, shuffle=is_train)

batch_size=10
data_iter=load_array((features, labels),batch_size)

next(iter(data_iter))

3.使用框架预定义好的层

复制代码
from torch import nn

net = nn.Sequential(nn.Linear(2, 1))

4.初始化模型参数

复制代码
net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)

5.计算均方误差使用的是MSELoss类(平方范式)

复制代码
loss = nn.MSELoss()

6.实例化SGD实例

复制代码
trainer = torch.optim.SGD(net.parameters(), lr=0.03)

7.训练过程代码

复制代码
num_epochs = 3
for epoch in range(num_epochs):
    for X, y in data_iter:
        l = loss(net(X), y)
        trainer.zero_grad()
        l.backward()
        trainer.step()
    l = loss(net(features), labels)
    print(f'epoch{epoch + 1},loss {1:f}')
相关推荐
wzf@robotics_notes8 分钟前
振动控制提升 3D 打印机器性能
嵌入式硬件·算法·机器人
机器学习之心26 分钟前
MATLAB基于多指标定量测定联合PCA、OPLS-DA、FA及熵权TOPSIS模型的等级预测
人工智能·算法·matlab·opls-da
Loo国昌36 分钟前
【LangChain1.0】第八阶段:文档处理工程(LangChain篇)
人工智能·后端·算法·语言模型·架构·langchain
xb11321 小时前
Winforms实战项目:运动控制界面原型
算法
MicroTech20251 小时前
微算法科技(NASDAQ :MLGO)量子安全哈希(QSHA),增强量子时代的区块链安全保障
科技·算法·安全
高洁011 小时前
数字孪生与数字样机的技术基础:建模与仿真
python·算法·机器学习·transformer·知识图谱
不忘不弃1 小时前
模拟内存分配器2
算法
被星1砸昏头1 小时前
C++中的享元模式
开发语言·c++·算法
淡忘旧梦2 小时前
词错误率/WER算法讲解
人工智能·笔记·python·深度学习·算法
狐572 小时前
2026-01-21-牛客每日一题-静态区间和(前缀和)
笔记·算法