线性回归简洁实现

1.通过使用深度学习框架来简洁实现线性回归模型生成数据集

复制代码
import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l

true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)

2.调用框架现有API来读取数据

复制代码
def load_array(data_arrays, batch_size, is_train=True):
    """构造Pytorch数据迭代器"""
    dataset = data.TensorDataset(*data_arrays)
    return data.DataLoader(dataset, batch_size, shuffle=is_train)

batch_size=10
data_iter=load_array((features, labels),batch_size)

next(iter(data_iter))

3.使用框架预定义好的层

复制代码
from torch import nn

net = nn.Sequential(nn.Linear(2, 1))

4.初始化模型参数

复制代码
net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)

5.计算均方误差使用的是MSELoss类(平方范式)

复制代码
loss = nn.MSELoss()

6.实例化SGD实例

复制代码
trainer = torch.optim.SGD(net.parameters(), lr=0.03)

7.训练过程代码

复制代码
num_epochs = 3
for epoch in range(num_epochs):
    for X, y in data_iter:
        l = loss(net(X), y)
        trainer.zero_grad()
        l.backward()
        trainer.step()
    l = loss(net(features), labels)
    print(f'epoch{epoch + 1},loss {1:f}')
相关推荐
only-qi14 分钟前
leetcode2. 两数相加
算法·leetcode
鲨莎分不晴16 分钟前
拯救暗淡图像:深度解析直方图均衡化(原理、公式与计算)
人工智能·算法·机器学习
DuHz33 分钟前
242-267 GHz双基地超外差雷达系统:面向精密太赫兹传感与成像的65nm CMOS实现——论文阅读
论文阅读·物联网·算法·信息与通信·毫米波雷达
AI科技星1 小时前
时空的固有脉动:波动方程 ∇²L = (1/c²) ∂²L/∂t² 的第一性原理推导、诠释与验证
数据结构·人工智能·算法·机器学习·重构
2401_841495641 小时前
【LeetCode刷题】寻找重复数
数据结构·python·算法·leetcode·链表·数组·重复数
罗技1232 小时前
Easysearch 集群监控实战(下):线程池、索引、查询、段合并性能指标详解
前端·javascript·算法
一路往蓝-Anbo2 小时前
C语言从句柄到对象 (七) —— 给对象加把锁:RTOS 环境下的并发安全
java·c语言·开发语言·stm32·单片机·嵌入式硬件·算法
中國龍在廣州2 小时前
谈谈2025年人工智能现状及发展趋势分析
人工智能·深度学习·算法·自然语言处理·chatgpt·机器人·机器人学习
wxdlfkj2 小时前
突破物理极限:利用多元回归算法重构激光三角位移传感器的亚微米级线性度
重构·数据挖掘·回归
C雨后彩虹2 小时前
二维伞的雨滴效应
java·数据结构·算法·华为·面试