线性回归简洁实现

1.通过使用深度学习框架来简洁实现线性回归模型生成数据集

复制代码
import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l

true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)

2.调用框架现有API来读取数据

复制代码
def load_array(data_arrays, batch_size, is_train=True):
    """构造Pytorch数据迭代器"""
    dataset = data.TensorDataset(*data_arrays)
    return data.DataLoader(dataset, batch_size, shuffle=is_train)

batch_size=10
data_iter=load_array((features, labels),batch_size)

next(iter(data_iter))

3.使用框架预定义好的层

复制代码
from torch import nn

net = nn.Sequential(nn.Linear(2, 1))

4.初始化模型参数

复制代码
net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)

5.计算均方误差使用的是MSELoss类(平方范式)

复制代码
loss = nn.MSELoss()

6.实例化SGD实例

复制代码
trainer = torch.optim.SGD(net.parameters(), lr=0.03)

7.训练过程代码

复制代码
num_epochs = 3
for epoch in range(num_epochs):
    for X, y in data_iter:
        l = loss(net(X), y)
        trainer.zero_grad()
        l.backward()
        trainer.step()
    l = loss(net(features), labels)
    print(f'epoch{epoch + 1},loss {1:f}')
相关推荐
猿究院--王升10 分钟前
jvm三色标记
java·jvm·算法
一车小面包25 分钟前
逻辑回归 从0到1
算法·机器学习·逻辑回归
tt5555555555552 小时前
字符串与算法题详解:最长回文子串、IP 地址转换、字符串排序、蛇形矩阵与字符串加密
c++·算法·矩阵
元亓亓亓2 小时前
LeetCode热题100--101. 对称二叉树--简单
算法·leetcode·职场和发展
不会学习?3 小时前
算法03 归并分治
算法
NuyoahC4 小时前
笔试——Day43
c++·算法·笔试
2301_821919924 小时前
决策树8.19
算法·决策树·机器学习
秋难降4 小时前
别再用暴力排序了!大小顶堆让「取极值」效率飙升至 O (log n)
python·算法·排序算法
学行库小秘5 小时前
基于门控循环单元的数据回归预测 GRU
人工智能·深度学习·神经网络·算法·回归·gru
_meow_5 小时前
数学建模 15 逻辑回归与随机森林
算法·数学建模·逻辑回归