InfoNce损失

系列博客目录


文章目录

  • 系列博客目录
  • [1. 基本原理](#1. 基本原理)
  • [2. 数学定义](#2. 数学定义)
  • [3. 工作流程](#3. 工作流程)
  • [4. InfoNCE 的优势](#4. InfoNCE 的优势)
  • [5. 实际应用](#5. 实际应用)

InfoNCE 损失(Information Noise Contrastive Estimation)是一种对比学习的损失函数,用于最大化正样本(匹配样本)之间的互信息,同时将负样本(不匹配样本)拉开距离。它最早由 Oord 等人在 2018 年提出,用于无监督学习的自监督表示学习。InfoNCE 损失通过以下方式运作:

1. 基本原理

InfoNCE 损失的目标是通过最大化互信息来区分匹配和不匹配的样本对。假设我们有一个输入样本(如图像)以及其对应的正样本(如文本描述),InfoNCE 会拉近匹配的图像-文本对的嵌入距离,并将不匹配对的嵌入拉远。为了实现这一点,InfoNCE 损失函数对一对正样本(即匹配对)和多个负样本进行对比,通过多分类交叉熵的形式来估计它们之间的相似度。

2. 数学定义

假设我们有一个图像 ( I ) 和其对应的文本 ( T ),InfoNCE 损失的公式为:

L InfoNCE = − log ⁡ exp ⁡ ( sim ( I , T ) / τ ) ∑ k = 1 K exp ⁡ ( sim ( I , T ~ k ) / τ ) \mathcal{L}{\text{InfoNCE}} = - \log \frac{\exp(\text{sim}(I, T)/\tau)}{\sum{k=1}^{K} \exp(\text{sim}(I, \tilde{T}_k)/\tau)} LInfoNCE=−log∑k=1Kexp(sim(I,T~k)/τ)exp(sim(I,T)/τ)

其中:

  • sim ( I , T ) \text{sim}(I, T) sim(I,T) 表示图像 I I I 和文本 T T T 的相似度(例如,可以是余弦相似度)。
  • τ \tau τ 是温度超参数,用于控制分布的平滑度。
  • T ~ k \tilde{T}_k T~k表示负样本集合(即不匹配的文本集合)。
  • K K K 是负样本的数量。

在 InfoNCE 损失中,通过最大化匹配对的相似度(即分子部分),并最小化与其他不匹配样本对的相似度(即分母部分),模型可以学习到匹配对在嵌入空间中彼此靠近,而不匹配对则远离。

3. 工作流程

  1. 正样本对:选择一个图像和其真实的描述文本作为正样本对。
  2. 负样本对:从不相关的文本(或图像)中随机选择一组作为负样本对。
  3. 计算相似度:计算正样本对和负样本对的相似度值,形成一个对比组。
  4. 优化目标:最大化正样本对的相似度,最小化负样本对的相似度,使模型能够有效区分匹配和不匹配对。

4. InfoNCE 的优势

  • 有效的对比学习:InfoNCE 利用正负样本对的对比,强化了模型对不同样本对的区分能力。
  • 灵活性:InfoNCE 可用于自监督学习,适用于处理视觉-语言、音频-文本等多模态任务。
  • 互信息最大化:通过最小化 InfoNCE 损失,模型间接最大化了嵌入空间中匹配样本之间的互信息。

5. 实际应用

在视觉-语言学习中,InfoNCE 损失被广泛用于图像和文本的表示学习任务。通过使用 InfoNCE 损失,模型可以在嵌入空间中对齐图像和文本的表示,从而更好地执行如图像-文本检索、视觉问答等任务。

相关推荐
Allen_LVyingbo27 分钟前
数智读书笔记系列035《未来医疗:医疗4.0引领第四次医疗产业变革》
人工智能·经验分享·笔记·健康医疗
zzc92133 分钟前
时频图数据集更正程序,去除坐标轴白边及调整对应的标签值
人工智能·深度学习·数据集·标签·时频图·更正·白边
isNotNullX34 分钟前
什么是数据分析?常见方法全解析
大数据·数据库·数据仓库·人工智能·数据分析
riveting43 分钟前
明远智睿H618:开启多场景智慧生活新时代
人工智能·嵌入式硬件·智能硬件·lga封装·3506
夜阑卧听风吹雨,铁马冰河入梦来1 小时前
Spring AI 阿里巴巴学习
人工智能·学习·spring
c7691 小时前
【文献笔记】Automatic Chain of Thought Prompting in Large Language Models
人工智能·笔记·语言模型·论文笔记
Blossom.1182 小时前
机器学习在智能供应链中的应用:需求预测与物流优化
人工智能·深度学习·神经网络·机器学习·计算机视觉·机器人·语音识别
Gyoku Mint2 小时前
深度学习×第4卷:Pytorch实战——她第一次用张量去拟合你的轨迹
人工智能·pytorch·python·深度学习·神经网络·算法·聚类
zzywxc7872 小时前
AI大模型的技术演进、流程重构、行业影响三个维度的系统性分析
人工智能·重构
点控云2 小时前
智能私域运营中枢:从客户视角看 SCRM 的体验革新与价值重构
大数据·人工智能·科技·重构·外呼系统·呼叫中心