PoissonRecon学习笔记

1. Screened Poisson Reconstruction (SPR)

源码:https://github.com/mkazhdan/PoissonRecon

However, as noted by several researchers, it suffers from a tendency to

over-smooth the data. 泊松重建存在过度平滑的现象。

方法:position and gradient constraints are defined over different domain types。集成位置和梯度两类不同域的约束。

与原始泊松相比误差更小,但对噪声敏感!

1.1 Boundary Conditions边界条件

In the original Poisson reconstruction the authors imposed Dirichlet boundary conditions.原泊松重建使用迪利克雷边界条件

In the present work we extend the implementation to support Neumann boundary conditions as well.扩展诺伊曼边界条件

As the figure shows, imposing Dirichlet constraints creates a water-tight surface that closes off before reaching the boundary while using Neumann constraints allows the surface to extend out to the boundary of the domain.施加狄利克雷约束会创建一个水密表面,该表面在到达边界之前会关闭,而使用诺依曼约束则允许表面延伸到域的边界。

1.2 运行时间、内存、分辨率对比(顶点数)


Adding a dualized screening term to the Poisson surface reconstruction framework significantly improves its geometric fidelity, while still allowing an efficient multigrid solver.

1.3 Over-Fitting 过拟合

右边screened Poisson更紧密的拟合噪声 ,所以比右图原始泊松重建质量更低。

At an extreme setting α = 0 we obtain an unscreened Poisson reconstruction as in [Kazhdan et al. 2006].α = 0 时为为筛选的泊松重建,类似于原始泊松重建。

at the base of the Eagle's neck, derive from our use of a conforming octree. Because we introduce additional leaf nodes near regions of sparse sampling, we obtain a correspondingly refined triangulation at those locations.在鹰脖子的底部,使用一致的八叉树,在稀疏采样区域附近引入了额外的叶节点,所以这些位置获得了相应的细化三角测量。α = 0 时screened Poisson 的细节比原始泊松更丰富。

2. Distributed Poisson Surface Reconstruction

client/server model 服务器/客户端

3. Poisson Surface Reconstruction with Envelope Constraints

出现过拟合表面,多余斑块。

incorporating the depth hull as a Dirichlet constraint within the global Poisson formulation.将深度作为迪利克雷约束,加入全局泊松方程。

Using a visual hull and/or depth hull derived from RGB-D scans to define the constraint envelope. 添加包络约束

3.1 定义隐式曲面

the implicit surface can be defined in regions near the samples, with no isosur-face extracted in regions outside of the support [HDD∗92, FG14].使用紧支持函数,可以在样本附近的区域中定义隐式表面

3.2 网格顶点密度过滤

the implicit surface can be trimmed in a post-processing phase by measuring the sampling density of the input point set at the vertices of the output mesh and discarding subsets of the mesh where the sampling density is too low [Kaz13].测量输出网格顶点处输入点集的采样密度并丢弃采样密度太低的网格子集.

3.3 重建表面位于深度外壳

That is, the reconstructed surface should lie within the object's depth hull [BGM06] (or equivalently, ray hull [ACCS04]).

4. The Heat Method for Distance Computation开源

热图提高计算效率。并行化处理。
热图计算距离

5. An Adaptive Multi-Grid Solver for Applications in ComputerGraphics

自适应求解器:保证精度的前提下,减少文件容量。

As observed by Agarwala, the offset function should only be high frequency near the seams and can be well-represented using an adaptive quadtree.自适应四叉树。Agarwala 的方法图像拼接方面。

We represent the target gradient field using mixed-degree finite elements stored along (dual) edges.

相关推荐
进阶小白猿9 小时前
Java技术八股学习Day36
学习
四维碎片11 小时前
【Qt】UDP跨平台调试工具
qt·学习·udp
好奇龙猫12 小时前
【人工智能学习-AI入试相关题目练习-第十八次】
人工智能·学习
程序员辣条12 小时前
AI产品经理:2024年职场发展的新机遇
人工智能·学习·职场和发展·产品经理·大模型学习·大模型入门·大模型教程
wanping1582599234112 小时前
AI Agent(学习六-FAISS 持久化到磁盘(重启不丢记忆))
人工智能·学习·faiss
童话名剑12 小时前
序列模型与集束搜索(吴恩达深度学习笔记)
人工智能·笔记·深度学习·机器翻译·seq2seq·集束搜索·编码-解码模型
知识分享小能手13 小时前
SQL Server 2019入门学习教程,从入门到精通,SQL Server 2019数据库的操作(2)
数据库·学习·sqlserver
鄭郑13 小时前
STM32学习笔记--I2C封装与OLED(2026.2.1)
笔记·stm32·学习
酒鼎14 小时前
学习笔记(4)HTML5新特性(第3章)- WebSocket
笔记·学习·html5
-Springer-15 小时前
STM32 学习 —— 个人学习笔记2-2(新建工程)
笔记·stm32·学习